• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor Claudin » Ter Jun 12, 2012 20:46

Dada a parábola y^2+6y-2x+9=0, determine os valores de m para que a reta x+2y+m=0

a) Seja secante à parábola
b) Seja tangente à parábola
c) Não corte a parábola
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Qua Jun 13, 2012 10:39

Claudin escreveu:Dada a parábola y^2+6y-2x+9=0, determine os valores de m para que a reta x+2y+m=0

a) Seja secante à parábola
b) Seja tangente à parábola
c) Não corte a parábola


Basta utilizar o mesmo raciocínio que lhe foi explicado em seu outro tópico:

Elipse
viewtopic.php?f=117&t=8483
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor Claudin » Qua Jun 13, 2012 21:09

Não consegui resolver o exercício.
Encontrei essa equação quando substitui o valor do y na equação.

5x^2+7xm+7m^2-8x+36
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Qui Jun 14, 2012 14:46

Claudin escreveu:Não consegui resolver o exercício.
Encontrei essa equação quando substitui o valor do y na equação.

5x^2+7xm+7m^2-8x+36


Fazendo a substituição y = \frac{-x-m}{2}, você deveria obter:

\left(\frac{-x-m}{2}\right)^2 + 6\left(\frac{-x-m}{2}\right) - 2x + 9 = 0

\frac{x^2 + 2mx + m^2}{4} -3x - 3m - 2x + 9 = 0

x^2 + 2mx + m^2 -12x - 12m - 8x + 36 = 0

x^2 + (2m - 20)x + \left(m^2 - 12m + 36\right) = 0

Considerando isso como uma equação polinomial do 2° grau na incógnita x, calcule o discriminante \Delta . Em seguida, use a análise que lhe foi explicada em seu outro tópico.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor Claudin » Qui Jun 14, 2012 15:07

Mas no caso, o meu "c" da equação do segundo grau quando for calcular o delta, seria uma nova equação do segundo grau, ou seja, irei obter dois valores para c?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Qui Jun 14, 2012 20:02

Nãao. Os valores "c" da equação de 2° grau em x que foi calculada dependem dos valores "m" de acordo com a relação

c= m^{2} - 12m + 36.

Ainda, a = 1 e b=2m-20.

Com isso, o discriminate \Delta da equação é

\Delta =b^{2}-4ac = (2m-20)^{2}-4.1.(m^{2}-12m + 36) = -32m + 256.

É crucial o calculo do discriminante pois é ele que comanda o tipo de solução que a equação terá. Veja que para a reta ser secante ao gráfico devem exixtir dois pontos de intersecção, ou seja, dois valores para x. Fazendo \Delta >0 isto é garantido. Já, para a reta ser tangente deve existir apenas um ponto de intersecção que é garantido fazendo \Delta =0. Para que não exista nehuma solução real, ou seja, a reta não intersecione o gráfico, basta tomar \Delta <0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Parábola

Mensagempor Claudin » Sex Jun 15, 2012 02:40

Valeu pela dica Russman. :y:
Irei refazer o exercício e amanha posto se consegui ou se continuo com alguma dúvida.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59