• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES/L’ Hôpital] CALCULO I

[LIMITES/L’ Hôpital] CALCULO I

Mensagempor FelipeTURBO » Qui Jun 14, 2012 14:15

\lim_{x\rightarrow0{+}^{}}=\left(1+x \right)^\frac{1}{x}

A resposta desse exercício seria 'e'. Como consigo chegar nessa resposta, já fiz de uma maneira porem a professora disse estar errado.
FelipeTURBO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 23, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [LIMITES/L’ Hôpital] CALCULO I

Mensagempor joaofonseca » Qui Jun 14, 2012 14:46

Seja,\space n=\frac{1}{x}. Então \space x=\frac{1}{n}

Assim, quando \space x \to 0^+ \space,\space n \to +\infty.

Podemos escrever:

\lim_{n \to +\infty} \left(1+\frac{1}{n} \right)^n=e

Genericamente:

\lim_{n \to +\infty} \left(1+\frac{k}{n} \right)^n=e^k

Podemos encarar isto como algo que sabemos de antemão que é verdadeiro, sem necessidade de provar.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [LIMITES/L’ Hôpital] CALCULO I

Mensagempor LuizAquino » Qui Jun 14, 2012 15:03

FelipeTURBO escreveu:\lim_{x\rightarrow 0^{+}}=\left(1+x \right)^\frac{1}{x}

A resposta desse exercício seria 'e'. Como consigo chegar nessa resposta, já fiz de uma maneira porem a professora disse estar errado.


Eu presumo que o objetivo do exercício seja aplicar a Regra de L'Hospital para calcular esse limite.

Vamos chamar o resultado desse limite de L. Temos então que:

L = \lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x}

Como \left(1+x\right)^\frac{1}{x} > 0 quando x\to 0^+ , podemos aplicar o logaritmo natural em ambos os membros dessa igualdade. Temos então que:

\ln L = \ln \left[\lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x}\right]

Como a função ln é contínua em todo o seu domínio, ela pode "entrar" no limite. Desse modo, obtemos que:

\ln L =  \lim_{x\to 0^+} \ln \left[\left(1+x\right)^\frac{1}{x}\right]

\ln L =  \lim_{x\to 0^+} \frac{1}{x}\ln (1+x)

\ln L =  \lim_{x\to 0^+} \frac{\ln (1+x)}{x}

Agora note que esse limite é uma indeterminação do tipo 0/0. Isso significa que podemos aplicar a Regra de L'Hospital para resolvê-lo.

\ln L =  \lim_{x\to 0^+} \frac{[\ln (1+x)]^\prime}{(x)^\prime}

\ln L =  \lim_{x\to 0^+} \frac{\frac{1}{1 + x}}{1}

\ln L =  \lim_{x\to 0^+} \frac{1}{1 + x}

\ln L = \frac{1}{1 + 0}

\ln L = 1

L = e^1

L = e

Sendo assim, temos que:

\lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x} = e

Observação

Uma curiosidade:

Regra de L’Hôpital, L’Hopital ou L’Hospital?
http://www.tecnosapiens.com.br/2010/03/ ... lhospital/
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: