• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipse

Elipse

Mensagempor Claudin » Dom Mai 20, 2012 21:45

Determine a equação paramétrica da elipse 4x^2+y^2-8x+6y+1=0

Fiz o seguinte

\frac{4(x-1)^2}{9}+\frac{(y+3)^2}{9}=1

Sabendo que as paramétricas são dadas a partir de:

x=x_o+acost
y=y_o+bsent

Não sei como prosseguir
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Elipse

Mensagempor DanielFerreira » Ter Mai 22, 2012 23:30

4x^2 + y^2 - 8x + 6y + 1 = 0

(2x - 2)^2 - 4 + (y +3)^2 - 9 + 1 = 0

4(x - 1)^2 + (y + 3)^2 = 12

\frac{(x - 1)^2}{3} + \frac{(y + 3)^2}{12} = 1

Temos que cos^2t + sen^2t = 1,

Fazendo,
\frac{(x - 1)^2}{3} = cos^2t ====> \frac{(x - 1)}{\sqrt[]{3}} = cost ====> x = 1 + \sqrt{3}.cost

\frac{(y + 3)^2}{12} = sen^2t ====> \frac{(y + 3)}{2\sqrt[]{3}} = sent====> y = - 3 + 2\sqrt{3}.sent

Espero ter ajudado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Elipse

Mensagempor Claudin » Qua Mai 23, 2012 21:08

Eu tinha ate conseguido
vi que cometi um erro bobo..
mas mesmo assim valeu ai

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Elipse

Mensagempor DanielFerreira » Qui Mai 24, 2012 11:02

Vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Elipse

Mensagempor Claudin » Ter Jun 12, 2012 20:33

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}