por Danilo » Sáb Jun 09, 2012 22:40
Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Jun 10, 2012 09:59
Danilo escreveu:Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
A interseção entre u e t é M = (-7/6, 7/6). Refaça as suas contas a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Dom Jun 10, 2012 16:25
Nossa, uma pequena desatenção. Deu certo aqui. Valeu !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida {equação da reta}
por Danilo » Sex Jun 08, 2012 16:48
- 2 Respostas
- 2518 Exibições
- Última mensagem por Danilo

Dom Jun 10, 2012 00:02
Geometria Analítica
-
- [Dúvida reta e plano]
por Andresa_s » Qua Ago 01, 2012 13:02
- 1 Respostas
- 1510 Exibições
- Última mensagem por MarceloFantini

Qua Ago 01, 2012 21:07
Geometria Espacial
-
- EQUACAO DA RETA... DUVIDA EM QUESTOES
por jeovani » Seg Mai 16, 2011 17:37
- 2 Respostas
- 1896 Exibições
- Última mensagem por DanielRJ

Seg Mai 16, 2011 20:13
Geometria Analítica
-
- Dúvida em exercício - Equação da reta
por Danilo » Qui Mai 24, 2012 05:11
- 5 Respostas
- 3763 Exibições
- Última mensagem por Danilo

Sáb Mai 26, 2012 18:59
Geometria Analítica
-
- interseção,área e reta dúvida exercício
por igor44 » Seg Out 31, 2011 21:20
- 1 Respostas
- 2027 Exibições
- Última mensagem por procyon

Ter Nov 01, 2011 00:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.