• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração de uma expressão aparentemente irracional

Fatoração de uma expressão aparentemente irracional

Mensagempor PeterHiggs » Qui Mai 31, 2012 10:15

Prove que \sqrt[3]{20+14\sqrt2} + \sqrt[3]{20-14\sqrt2} é um número racional.

Obs.: A expressão vale 4.



* Comecei, associando à expressão o valor x (Para que eu pudesse elevar ao cubo, fatorar, fazer todas as transformações, e depois voltar ao "ponto de partida", já que estou trabalhando com uma expressão, e não uma equação)

Então, elevei ao cubo:

x^3 = \sqrt[3]{(20+14\sqrt2)^3} + 3\sqrt[3]{8(20+14\sqrt2)} + 3\sqrt[3]{8(20-14\sqrt2)} + \sqrt[3]{(20-14\sqrt2)^3}

x^3 = 40 + 6(\sqrt[3]{20+\sqrt{392}}+\sqrt[3]{20-\sqrt{392}})

Bom, a partir daí, não consegui chegar a lugar algum. Alguém pode ajudar?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fatoração de uma expressão aparentemente irracional

Mensagempor Russman » Qui Mai 31, 2012 10:57

PeterHiggs escreveu:Prove que \sqrt[3]{20+14\sqrt2} + \sqrt[3]{20-14\sqrt2} é um número racional.

Obs.: A expressão vale 4.



* Comecei, associando à expressão o valor x (Para que eu pudesse elevar ao cubo, fatorar, fazer todas as transformações, e depois voltar ao "ponto de partida", já que estou trabalhando com uma expressão, e não uma equação)

Então, elevei ao cubo:

x^3 = \sqrt[3]{(20+14\sqrt2)^3} + 3\sqrt[3]{8(20+14\sqrt2)} + 3\sqrt[3]{8(20-14\sqrt2)} + \sqrt[3]{(20-14\sqrt2)^3}

x^3 = 40 + 6(\sqrt[3]{20+\sqrt{392}}+\sqrt[3]{20-\sqrt{392}})

Bom, a partir daí, não consegui chegar a lugar algum. Alguém pode ajudar?



Faça,

a = \sqrt[3]{20+14\sqrt2} , b= \sqrt[3]{20-14\sqrt2} .

Como,

{(a+b)}^{3} = {a}^{3}+{b}^{3}+3ab(a+b)

entao

{(a+b)}^{3} = 6(a+b)+40.

Chamando a+b = x você tem uma equação cúbica do tipo
{x}^{3}-6x-40=0

donde se vê que x=4 é solução!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fatoração de uma expressão aparentemente irracional

Mensagempor PeterHiggs » Qui Mai 31, 2012 21:45

Obrigado pela resposta !
Simplesmente genial ! Valeu !!!! :y:
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.