por lucasguilherme2 » Qui Mai 24, 2012 11:49
Prezados,
Gostaria que vocês me ajudassem no entendimento do valor do cosseno(x) e seno(x) quando X tende a infinito. Sei que o valor oscila entre 1 e -1, mas dessa conclusão não consigo tirar as respostas. Sempre fico na dúvida se é zero ou infinito ou, até mesmo, 1. Se puderem me ajudar, eu agradeço.

ass.: Lucas Guilherme
-
lucasguilherme2
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 24, 2012 11:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Materiais
- Andamento: cursando
por LuizAquino » Qui Mai 24, 2012 19:05
lucasguilherme2 escreveu:Gostaria que vocês me ajudassem no entendimento do valor do cosseno(x) e seno(x) quando X tende a infinito. Sei que o valor oscila entre 1 e -1, mas dessa conclusão não consigo tirar as respostas. Sempre fico na dúvida se é zero ou infinito ou, até mesmo, 1.
Cada limite é um caso. Por favor, informe o limite que você está com dificuldade.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por lucasguilherme2 » Seg Mai 28, 2012 21:51
Na verdade, é que estou estudando sequencias e,nos exercícios onde se pede a analise para ver se a função diverge ou converge, aparece a função seno e cosseno multiplicadas.
Exemplo: determinar se a seguinte função diverge ou converge.
Para isso é necessário que se faça o limite com n tendendo ao infinito, daí vem minhas dúvidas quanto ao valor do seno.
![\left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right] \left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right]](/latexrender/pictures/9b369bd52362cf222b4228d79a0bce7b.png)
![\left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right] \left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right]](/latexrender/pictures/9b369bd52362cf222b4228d79a0bce7b.png)
Se puderem me ajudar, agradeço muito.
-
lucasguilherme2
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Mai 24, 2012 11:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Materiais
- Andamento: cursando
por LuizAquino » Ter Mai 29, 2012 11:54
lucasguilherme2 escreveu:Na verdade, é que estou estudando sequencias e,nos exercícios onde se pede a analise para ver se a função diverge ou converge, aparece a função seno e cosseno multiplicadas.
Exemplo: determinar se a seguinte função diverge ou converge.
Para isso é necessário que se faça o limite com n tendendo ao infinito, daí vem minhas dúvidas quanto ao valor do seno.
![\left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right] \left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right]](/latexrender/pictures/9b369bd52362cf222b4228d79a0bce7b.png)
![\left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right] \left[ [(2n² + 1) / (n + 1)]* sen \pi/2n \right]](/latexrender/pictures/9b369bd52362cf222b4228d79a0bce7b.png)
Da forma como você escreveu, a sequência seria:

Mas ao que parece, a sequência original no exercício deve ser:

Nesse caso, você deveria ter escrito algo como:
![\left[\left(2n^2+ 1\right)/(n + 1)\right]\,\textrm{sen}\,(\pi n/2) \left[\left(2n^2+ 1\right)/(n + 1)\right]\,\textrm{sen}\,(\pi n/2)](/latexrender/pictures/5b119dd2bf8b8aba9cba187ec312bf43.png)
Perceba a importância de escrever corretamente as notações!
Feita essa observação, vejamos a resolução.
Quando

, o valor de

é indeterminado.
Dos conhecimentos de trigonometria, sabemos que:









(...)
Podemos perceber nisso um padrão. Quando n é par, o valor desse seno é 0. Quando n pertence a p. a. {1, 5, 9, 13, ...}, esse valor é 1. E quando n pertence a p. a. {3, 7, 11, 15, ...}, esse valor é -1.
Sendo assim, temos que:

Perceba agora que cada parte dessa sequência tem um limite diferente quando

. A primeira parte vai para 0. Já a segunda vai para

. E a terceira vai para

.
Como cada parte tem um limite diferente, concluímos que a sequência

é divergente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite com x tendendo ao infinito
por PeterHiggs » Ter Mar 04, 2014 16:53
- 2 Respostas
- 3742 Exibições
- Última mensagem por PeterHiggs

Ter Mar 04, 2014 23:08
Cálculo: Limites, Derivadas e Integrais
-
- Determinar o limite tendendo ao infinito.
por Arthur_Bulcao » Sex Mar 23, 2012 17:34
- 6 Respostas
- 5108 Exibições
- Última mensagem por Arthur_Bulcao

Qua Mar 28, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
-
- (Limite) tendendo a - infinito com raiz cúbica
por kAKO » Qui Mai 07, 2015 12:18
- 1 Respostas
- 4316 Exibições
- Última mensagem por adauto martins

Sáb Mai 09, 2015 15:46
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Questão de limite tendendo à infinito
por _bruno94 » Sex Mai 31, 2013 00:28
- 3 Respostas
- 2781 Exibições
- Última mensagem por Jhonata

Sex Mai 31, 2013 01:30
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Seno e cosseno
por KleinIll » Qua Out 31, 2012 15:01
- 2 Respostas
- 2561 Exibições
- Última mensagem por e8group

Qua Out 31, 2012 20:34
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.