• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N° Complexos - Creio que seja minha última dúvida no assunto

N° Complexos - Creio que seja minha última dúvida no assunto

Mensagempor iceman » Dom Mai 27, 2012 21:29

\frac{(1+i)}{(1-i)} ^1^0^0 i=\sqrt-1, é igual a:

Tentei escrever pelo Tex mas acho que não deu muito certo. (1+i/1-i)^1^0^0 i=\sqrt-1, é igual a:

a) i
b) ?1
c) 1
d) ? i
e) N.D.A
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Dom Mai 27, 2012 21:34

\left(\frac{(1 + i)}{(1 - i)} \right)^{100}.i

É assim?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Dom Mai 27, 2012 21:39

Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: N° Complexos

Mensagempor iceman » Dom Mai 27, 2012 22:32

danjr5 escreveu:Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!


Não tem os parênteses de dentro, somente os grandes e eu não consigo prosseguir D;
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Qui Mai 31, 2012 22:25

danjr5 escreveu:Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!

Então, Iceman,
aquela fração que está dentro do parênteses 'grande' resume-se a i, com isso:
i^{100} . i =

i^{0} . i =
0 => resto da divisão de 100 por 4!!

1 . i =

i

opção "a"
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}