• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N° Complexos - Creio que seja minha última dúvida no assunto

N° Complexos - Creio que seja minha última dúvida no assunto

Mensagempor iceman » Dom Mai 27, 2012 21:29

\frac{(1+i)}{(1-i)} ^1^0^0 i=\sqrt-1, é igual a:

Tentei escrever pelo Tex mas acho que não deu muito certo. (1+i/1-i)^1^0^0 i=\sqrt-1, é igual a:

a) i
b) ?1
c) 1
d) ? i
e) N.D.A
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Dom Mai 27, 2012 21:34

\left(\frac{(1 + i)}{(1 - i)} \right)^{100}.i

É assim?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Dom Mai 27, 2012 21:39

Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: N° Complexos

Mensagempor iceman » Dom Mai 27, 2012 22:32

danjr5 escreveu:Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!


Não tem os parênteses de dentro, somente os grandes e eu não consigo prosseguir D;
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Creio que seja minha última dúvida no ass

Mensagempor DanielFerreira » Qui Mai 31, 2012 22:25

danjr5 escreveu:Raconaliza.
\frac{(1 + i)}{(1 - i)} . \frac{(1 + i)}{(1 + i)} =

\frac{(1 + 2i + i^2)}{(1 - i^2)} =

\frac{(1 + 2i + - 1)}{(1 + 1)} =

\frac{2i}{2} =

i

Creio que consiga prosseguir, se não, retorne!!

Então, Iceman,
aquela fração que está dentro do parênteses 'grande' resume-se a i, com isso:
i^{100} . i =

i^{0} . i =
0 => resto da divisão de 100 por 4!!

1 . i =

i

opção "a"
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.