• Anúncio Global
    Respostas
    Exibições
    Última mensagem

me ajudem!!!!!

me ajudem!!!!!

Mensagempor Juana » Sex Mai 25, 2012 23:21

Nao estou conseguindo chegar na resposta correta, o resultado sempre esta dando 660, onde estou errando?
Quantos algarismos sao necessarios para numerar as 257 paginas de um livro cuja numeração começa com 1??
Juana
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 25, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: agente administrativo
Andamento: cursando

Re: me ajudem!!!!!

Mensagempor Juana » Sex Mai 25, 2012 23:29

Juana escreveu:Nao estou conseguindo chegar na resposta correta, o resultado sempre esta dando 660, onde estou errando?
Quantos algarismos sao necessarios para numerar as 257 paginas de um livro cuja numeração começa com 1??
Juana
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 25, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: agente administrativo
Andamento: cursando

Re: me ajudem!!!!!

Mensagempor DanielFerreira » Dom Mai 27, 2012 15:33

Juana,
já tem tempo que não vejo questões desse tipo. Talvez, minha solução esteja errada.
Diga qual é o gabarito.

1 à 9 =========> (9 - 1 + 1).1 ==========> 9 . 1

10 à 99 =======> (99 - 10 + 1).2 ========> 90 . 2

100 à 257 =====> (257 - 100 + 1).3 ======> 158 . 3

Total:
9 + 180 + 474 =
663
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: me ajudem!!!!!

Mensagempor Juana » Dom Mai 27, 2012 17:37

danjr5 escreveu:Juana,
já tem tempo que não vejo questões desse tipo. Talvez, minha solução esteja errada.
Diga qual é o gabarito.

1 à 9 =========> (9 - 1 + 1).1 ==========> 9 . 1

10 à 99 =======> (99 - 10 + 1).2 ========> 90 . 2

100 à 257 =====> (257 - 100 + 1).3 ======> 158 . 3

Total:
9 + 180 + 474 =
663



olá danjr5, o gabartio e este mesmo 663, muito obrigada pela solução e ajuda.
Obrigada
Juana
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 25, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: agente administrativo
Andamento: cursando

Re: me ajudem!!!!!

Mensagempor DanielFerreira » Dom Mai 27, 2012 18:17

:y: e até breve!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: me ajudem!!!!!

Mensagempor Juana » Dom Mai 27, 2012 18:24

:-D até
Juana
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 25, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: agente administrativo
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?