por Claudin » Dom Mai 20, 2012 16:46
Determine os semi-eixos, os focos, a excentricidade e as diretrizes da elipse

Não consigo resolver
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 17:16
Claudin escreveu:Determine os semi-eixos, os focos, a excentricidade e as diretrizes da elipse

Não consigo resolver

dividindo por 2;


Claudin,
talvez sua dúvida seja essa. A propósito, como está tentando resolver?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 18:01
Pelo que eu vi aqui eu errei conta, agora como faço pra achar os semi eixos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 18:19
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 18:53


, então o eixo maior está no eixo x, certo?!

====>
![a = \sqrt[]{\frac{2}{3}} a = \sqrt[]{\frac{2}{3}}](/latexrender/pictures/8011207d39a509f9387c8bbb0a91b624.png)
====>
![a = \frac{\sqrt[]{2}}{\sqrt[]{3}} a = \frac{\sqrt[]{2}}{\sqrt[]{3}}](/latexrender/pictures/ca93003aa970a5b13865d91d3c5a70d2.png)
====>
![a = \frac{\sqrt[]{6}}{3} a = \frac{\sqrt[]{6}}{3}](/latexrender/pictures/bd70a4a47e55e476fa5664df0daaa747.png)
e
![a = - \frac{\sqrt[]{6}}{3} a = - \frac{\sqrt[]{6}}{3}](/latexrender/pictures/eba0eb62b71025dff9906d912abf7919.png)
Como o centro é na origem:
![(- \frac{\sqrt[]{6}}{3},0) (- \frac{\sqrt[]{6}}{3},0)](/latexrender/pictures/84544aa13097f7fed89732bb04154f5d.png)
e
![(\frac{\sqrt[]{6}}{3},0) (\frac{\sqrt[]{6}}{3},0)](/latexrender/pictures/b4a8b0ca48d19b5e9e97357225b21741.png)
2a =
![\frac{2\sqrt[]{6}}{3} \frac{2\sqrt[]{6}}{3}](/latexrender/pictures/9a472bbe52e8a9248536e36e40b71a3d.png)
===================> Eixo maior
Tente agora o eixo menor
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 19:36
No gabarito que tenho aqui, o resultado correto seria os focos que eu postei primeiramente
poderia conferir pra ver qual estaria correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:38
Desculpe, eu n tinha postado, mas agora ta aqui embaixo, verifique e veja qual esta correto o meu ou o seu? Pois o gabarito pode estar errado tbm ne.
![(\frac{\sqrt[]{6}}{6},0) (\frac{\sqrt[]{6}}{6},0)](/latexrender/pictures/c8d55b8ea1942c08eccc59242ffffff4.png)
![(-\frac{\sqrt[]{6}}{6},0) (-\frac{\sqrt[]{6}}{6},0)](/latexrender/pictures/3ee9f571cb48063b7bc382409a2b0446.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:50
Calculando c a partir de:

obtive que
![\frac{\sqrt[]{6}}{2} \frac{\sqrt[]{6}}{2}](/latexrender/pictures/0d9999d9fca0eb82da522e64aa8b7610.png)
Portanto os meus focos irao mudar novamente, e não encontrei a resposta exata até agora.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 19:51
Claudin,
conferi minhas contas e não achei erro! Se estou errando, não sei em qual passagem!!
Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 19:57
Mas os valores dos seus Focos, qual seria?
Pois os valores deveriam ser empregados da seguinte maneira


Correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:58
E gostaria de saber como calcula os semi-eixos também, que não consegui.
obrigado

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 20:02
Claudin escreveu:Calculando c a partir de:

obtive que
![\frac{\sqrt[]{6}}{2} \frac{\sqrt[]{6}}{2}](/latexrender/pictures/0d9999d9fca0eb82da522e64aa8b7610.png)
Portanto os meus focos irao mudar novamente, e não encontrei a resposta exata até agora.



====>

====>

====>
![c = \frac{\sqrt[]{6}}{6} c = \frac{\sqrt[]{6}}{6}](/latexrender/pictures/a5564b0847a52d3c80953debaf4fd8dc.png)
e
![2c = \frac{\sqrt[]{6}}{3} 2c = \frac{\sqrt[]{6}}{3}](/latexrender/pictures/978837582acc95bd2c37e641b13d6a19.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 20:10
obrigado
e os semi-eixos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 20:11
Eixo Maior:
![(- \frac{\sqrt[]{6}}{3}, 0) (- \frac{\sqrt[]{6}}{3}, 0)](/latexrender/pictures/b710fc0c767d3ba548fddf890543a221.png)
e
![(\frac{\sqrt[]{6}}{3}, 0) (\frac{\sqrt[]{6}}{3}, 0)](/latexrender/pictures/a42eea1cb1839396cc39143a46f1fe72.png)
Eixo Menor:
![(0, - \frac{\sqrt[]{2}}{2}) (0, - \frac{\sqrt[]{2}}{2})](/latexrender/pictures/e40e11e54da8a53acf637a1d51cd0132.png)
e
![(0, \frac{\sqrt[]{2}}{2}) (0, \frac{\sqrt[]{2}}{2})](/latexrender/pictures/f58e29881d64cf57ffa0294a34b502e1.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 20:40
Obrigado

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Elipse
por carmem » Seg Jun 01, 2009 16:21
- 3 Respostas
- 3579 Exibições
- Última mensagem por Cleyson007

Sex Jun 05, 2009 12:54
Geometria Analítica
-
- Elipse
por lucas1365 » Sex Jul 03, 2009 21:30
- 0 Respostas
- 1748 Exibições
- Última mensagem por lucas1365

Sex Jul 03, 2009 21:30
Geometria Analítica
-
- Elipse
por Siax » Sex Jul 10, 2009 00:03
- 0 Respostas
- 1728 Exibições
- Última mensagem por Siax

Sex Jul 10, 2009 00:03
Geometria Analítica
-
- Elipse
por Claudin » Dom Mai 20, 2012 18:50
- 2 Respostas
- 1532 Exibições
- Última mensagem por Claudin

Qui Mai 24, 2012 02:55
Geometria Analítica
-
- Elipse
por Claudin » Dom Mai 20, 2012 20:07
- 2 Respostas
- 1359 Exibições
- Última mensagem por Claudin

Ter Jun 12, 2012 20:29
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.