• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função implícita; Questão complicada!

Função implícita; Questão complicada!

Mensagempor jemourafer » Qui Mai 17, 2012 18:30

A questão é a seguinte:
-Considere a lemniscata de equação (x^2+y^2)^2=x^2-y^2. Determine os quatro pontos de lemniscata em que as retas tangentes são horizontais. Ache, em seguida, os dois pontos em que as tangentes são verticais.

Derivei implicitamente a função sem problemas ( {y}^{\prime}=\frac{x-2x^3-2xy^2}{2y^3+y+2x^2y} ), porém não consigo resolver a equação para achar os pontos onde a reta tangente é horizontal e onde é vertical. Como posso fazer isso?
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Função implícita; Questão complicada!

Mensagempor Fabio Wanderley » Sex Mai 18, 2012 12:36

Olá,

Você já estudou o tema Assíntotas horizontal e vertical?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Função implícita; Questão complicada!

Mensagempor jemourafer » Sex Mai 18, 2012 14:42

Oi :)
Já estudei sim! Imagino também que pra descobrir os pontos onde a reta tangente é horizontal, basta igualar a zero o numerador. Já os pontos onde a reta tangente é vertical, precisaremos que o denominador valha zero. Meu problema mesmo é em relação à conta pra achar a solução dessas equações.
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Função implícita; Questão complicada!

Mensagempor LuizAquino » Sex Mai 18, 2012 17:17

jemourafer escreveu:A questão é a seguinte:
-Considere a lemniscata de equação (x^2+y^2)^2=x^2-y^2. Determine os quatro pontos de lemniscata em que as retas tangentes são horizontais. Ache, em seguida, os dois pontos em que as tangentes são verticais.

Derivei implicitamente a função sem problemas ( {y}^{\prime}=\frac{x-2x^3-2xy^2}{2y^3+y+2x^2y} ), porém não consigo resolver a equação para achar os pontos onde a reta tangente é horizontal e onde é vertical. Como posso fazer isso?


jemourafer escreveu:Oi :)
Já estudei sim! Imagino também que pra descobrir os pontos onde a reta tangente é horizontal, basta igualar a zero o numerador. Já os pontos onde a reta tangente é vertical, precisaremos que o denominador valha zero. Meu problema mesmo é em relação à conta pra achar a solução dessas equações.


Para as tangentes horizontais, devemos ter:

x-2x^3-2xy^2 = 0

x\left(1 - 2x^2 - 2y^2\right) = 0

x = 0 \textrm{ ou } 1 - 2x^2 - 2y^2 = 0

Para o primeiro caso, substituindo x = 0 na equação da lemniscata, ficamos com y^4 = -y^2 . Note que essa equação não tem solução real. Portanto, devemos descartar a possibilidade de x = 0.

Já para o segundo caso, substituindo y^2 = -x^2 + \frac{1}{2} na equação da lemniscata, ficamos com \frac{1}{4} = 2x^2 - \frac{1}{2} . Note que essa equação tem duas soluções reais. Cada uma dessas soluções irá determinar duas soluções para y. Teremos então os quatro pontos nos quais a reta tangente é horizontal.

Agora basta seguir uma ideia semelhante para determinar os pontos nos quais a reta tangente é vertical. Nesse caso, devemos ter:

2y^3+y+2x^2y = 0

y\left(2y^2+ 1 + 2x^2\right) = 0

y = 0 \textrm{ ou } 2y^2+ 1 + 2x^2 = 0

Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função implícita; Questão complicada!

Mensagempor Fabio Wanderley » Sáb Mai 19, 2012 03:16

Puxa, agora que notei como vc está bem mais avançado. E eu fui tentar te ajudar com um assunto bem inicial. :lol:
Mas é que estou estudando assíntotas horizontais e verticais e daí já tentei adaptar ao seu problema...

Boa sorte aí!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: