• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não desista desta forma

Em geral, de autoria de alunos corajosos, em momentos de admirável criatividade.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Não desista desta forma

Mensagempor fabiosousa » Sex Set 07, 2007 06:38

forca.jpg
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Não desista desta forma

Mensagempor [++] » Dom Jul 19, 2009 23:05

KKKKKKKKKKKKKKKKK HAHAHAHAHAHAHA LoL LoL LoL LoL LoL LoL :lol: :lol: :lol: :lol: :lol: :lol: ;) ;) ;) ;) ;) ;) :-P :-P :-P :-P
[++]
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Jul 15, 2009 23:55
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Não desista desta forma

Mensagempor Neperiano » Sex Out 21, 2011 16:34

Ola

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Pelo menos ele teve criatividade

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Não desista desta forma

Mensagempor andrehp » Sáb Mar 16, 2013 11:08

Nossa, a Bic do cara explodiu, fora que ele enforcou -se de forma bem humorada no final da tentativa.
"A política serve a um momento no presente, mas uma equação é eterna." [Albert Einstein]
andrehp
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mar 16, 2013 10:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Não desista desta forma

Mensagempor Eakofuta » Sex Mar 23, 2018 05:27

All correctly written!
Eakofuta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 23, 2018 02:00
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Formação Escolar
Andamento: formado


Voltar para Pérolas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}