• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferência

Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 15:11

Determine a equação da circunferencia com centro (1,6) e tangente a reta x-y=1.
Editado pela última vez por Claudin em Sáb Mai 05, 2012 16:18, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 16:01

Tentei fazer do seguinte modo

tendo a eq da tangente
x-y=1

descobri o ponto na reta tangente sendo
A(1,0)

E fiz a distancia entre 2 pontos

e encontrei a equação como

(x-1)² + (y-6)² = 36

Porém o resultado não é este.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Sáb Mai 05, 2012 18:50

Claudin escreveu:Determine a equação da circunferencia com centro (1,6) e tangente a reta x-y=1.


Claudin escreveu:Tentei fazer do seguinte modo

tendo a eq da tangente
x-y=1

descobri o ponto na reta tangente sendo
A(1,0)

E fiz a distancia entre 2 pontos

e encontrei a equação como

(x-1)² + (y-6)² = 36

Porém o resultado não é este.


Não basta descobrir qualquer ponto na reta. Você precisa descobrir o ponto de tangência. Daí sim você poderia calcular a distância entre os pontos e afirmar que ela é o raio.

Seja T o ponto de tangência. Como T pertence a reta, temos que T = (x, x - 1).

Por outro lado, como C = (1, 6) é o centro da circunferência e \vec{d} = (1, 1) é o vetor diretor da reta, temos que:

\overrightarrow{CT} \cdot \vec{d} = 0

Isso porque o raio OT é perpendicular a reta, já que T é ponto de tangência entre a circunferência e a reta.

Sabemos que:

\overrightarrow{CT} = T - C = (x,\, x - 1) - (1,\, 6) = (x - 1,\, x - 7)

Sendo assim, temos que:

(x-1)\cdot 1 + (x-7)\cdot 1 = 0

x = 4

Portanto, temos que T = (4, 3).

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 21:49

Obrigado Luiz Aquino.

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 09:33

Tive uma dúvida, gostaria de saber a técnica que você usa para encontrar vetor diretor d = (1,1), pois eu sempre erro, mudo um sinal que não devia mudar e por ai vai...
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Dom Mai 06, 2012 10:29

Claudin escreveu:Tive uma dúvida, gostaria de saber a técnica que você usa para encontrar vetor diretor d = (1,1), pois eu sempre erro, mudo um sinal que não devia mudar e por ai vai...


Você pode escolher dois pontos da reta e determinar o vetor diretor a partir deles.

Por exemplo, na reta x - y = 1, podemos escolher os pontos A=(0, -1) e B=(1, 0). Portanto, um vetor diretor será:

\vec{d} = \overrightarrow{AB} = B - A = (1,\,0) - (0,\,-1) = (1,\, 1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 10:36

No caso você atribuiu valores ne?
Quando x=0 e quando y=0

certo?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Dom Mai 06, 2012 10:55

Claudin escreveu:No caso você atribuiu valores ne?
Quando x=0 e quando y=0

certo?


Claro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 10:58

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59