• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor klysman » Qui Mai 03, 2012 20:12

gente , nao to conseguindo resolver essa formula
alguem pode me explicar por favor
é urgente, tenho que entregar meu trabalho escolar amanha =/

Função ate onde eu fui

B=(Xp,0) A(-2,1) Dent= Raiz quadrada de 10

( Xp,-(-2) )²+ (0,-1)² =Raiz de 10
(Xp,2)² + 1 = Raiz de 10
....

a parti dai não sei mais oqui fazer , é como chegar a resposta !

Alguem me ajuda por favor

Obrigado . =]
klysman
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 01, 2012 20:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor Russman » Qui Mai 03, 2012 20:47

.
Editado pela última vez por Russman em Qui Mai 03, 2012 20:54, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor Russman » Qui Mai 03, 2012 20:53

Eu não entendi muito beem oque você precisa calcular. Por que você não posta o problema completo? Acho que fica melhor de te ajudar.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor klysman » Qui Mai 03, 2012 20:55

(X+2)²+1= \sqrt10

Esse e um problema da Geometria analitica , usando o teorema de pitagoras

só qui não to sabendo tira essa 10 da Raiz

Deu pra intender direitinho ? Obg
klysman
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 01, 2012 20:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor Russman » Qui Mai 03, 2012 21:10

Nessa equação o \sqrt[]{10} não é ao quadrado? Porque então fica

{(x+2)}^{2} + 1 = {(\sqrt[]{10})}^{2}

{(x+2)}^{2} + 1 = 10 \Rightarrow (x+2) = +-3 \Rightarrow x = 1 ou x=-5.

Lembre-se que no Teorema de Pitágoras todos os termos são elevados ao quadrado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Me ajudem pls, B=(Xp,0) A(-2,1) Dent= Raiz de 10

Mensagempor klysman » Qui Mai 03, 2012 21:12

Obrigado , entendi ^^
klysman
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 01, 2012 20:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D