• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Correção de exercicfio

Correção de exercicfio

Mensagempor pehpy » Seg Abr 30, 2012 07:48

Por favor alguém pode olhar o exercicio e me dizer se respondi certo ou onde foi que eu errei?

Exercícios
01) Sejam S = {1, 2} e T = {2, 3, 4}, determine:
a) R1 = xRy se e somente se x + y for par. = {(1,3), (2,2), (2,4)}
b) R2 = xRy se e somente se y = 2x = {(2,2), (2,3), (2,4)}
c) R3 = xRy se e somente se x divide y. = {(1,2), (1,4), (2,2), (2,4)
d) R4 = xRy se e somente se x <ou igual y = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}
e) R5 = xRy se e somente se x > y = ?
f) R6 = xRy se e somente se y = x + 1 = {(1,2), (2,3)}
g) R7 = xRy se e somente se y = x2 + 1 = {(1,2)}
h) R8 = xRy se e somente se y = x2 = {(2,4)}
i) R9 = xRy se e somente se y = x = {(2,2)}

o latex não finciona.
"... se o homem animado do espírito científico deseja sem dúvida saber, é para poder em seguida melhor perguntar."
(Gaston Bachelard)
Avatar do usuário
pehpy
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Abr 30, 2012 07:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Correção de exercicfio

Mensagempor DanielFerreira » Seg Abr 30, 2012 23:36

pehpy escreveu:Por favor alguém pode olhar o exercicio e me dizer se respondi certo ou onde foi que eu errei?

Exercícios
01) Sejam S = {1, 2} e T = {2, 3, 4}, determine:
a) R1 = xRy se e somente se x + y for par. = {(1,3), (2,2), (2,4)}
b) R2 = xRy se e somente se y = 2x = {(2,2), (2,3), (2,4)} ==========================> essa contém erro. Mostre com a fez!!
c) R3 = xRy se e somente se x divide y. = {(1,2), (1,4), (2,2), (2,4)} =================> Esqueceu (1,3)
d) R4 = xRy se e somente se x <ou igual y = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}
e) R5 = xRy se e somente se x > y = ? ==========================================> { }
f) R6 = xRy se e somente se y = x + 1 = {(1,2), (2,3)}
g) R7 = xRy se e somente se y = x² + 1 = {(1,2)}
h) R8 = xRy se e somente se y = x² = {(2,4)}
i) R9 = xRy se e somente se y = x = {(2,2)}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Correção de exercicfio

Mensagempor pehpy » Ter Mai 01, 2012 03:40

danjr5 escreveu:
pehpy escreveu:Por favor alguém pode olhar o exercicio e me dizer se respondi certo ou onde foi que eu errei?

Exercícios
01) Sejam S = {1, 2} e T = {2, 3, 4}, determine:
a) R1 = xRy se e somente se x + y for par. = {(1,3), (2,2), (2,4)}
b) R2 = xRy se e somente se y = 2x = {(2,2), (2,3), (2,4)} ==========================> essa contém erro. Mostre com a fez!!
c) R3 = xRy se e somente se x divide y. = {(1,2), (1,4), (2,2), (2,4)} =================> Esqueceu (1,3)
d) R4 = xRy se e somente se x <ou igual y = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}
e) R5 = xRy se e somente se x > y = ? ==========================================> { }
f) R6 = xRy se e somente se y = x + 1 = {(1,2), (2,3)}
g) R7 = xRy se e somente se y = x² + 1 = {(1,2)}
h) R8 = xRy se e somente se y = x² = {(2,4)}
i) R9 = xRy se e somente se y = x = {(2,2)}


b) esse y = 2x não é igual a x2, ou seja, igual a 2?????? foi esse o raciocionio quer usei.

Muito obrigada por corrigir. Meu professor não tem tempo. :/
"... se o homem animado do espírito científico deseja sem dúvida saber, é para poder em seguida melhor perguntar."
(Gaston Bachelard)
Avatar do usuário
pehpy
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Abr 30, 2012 07:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Correção de exercicfio

Mensagempor DanielFerreira » Ter Mai 01, 2012 14:59

pehpy escreveu:
danjr5 escreveu:
pehpy escreveu:Por favor alguém pode olhar o exercicio e me dizer se respondi certo ou onde foi que eu errei?

Exercícios
01) Sejam S = {1, 2} e T = {2, 3, 4}, determine:
a) R1 = xRy se e somente se x + y for par. = {(1,3), (2,2), (2,4)}
b) R2 = xRy se e somente se y = 2x = {(2,2), (2,3), (2,4)} ==========================> essa contém erro. Mostre como a fez!!
c) R3 = xRy se e somente se x divide y. = {(1,2), (1,4), (2,2), (2,4)} =================> Esqueceu (1,3)
d) R4 = xRy se e somente se x <ou igual y = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}
e) R5 = xRy se e somente se x > y = ? ==========================================> { }
f) R6 = xRy se e somente se y = x + 1 = {(1,2), (2,3)}
g) R7 = xRy se e somente se y = x² + 1 = {(1,2)}
h) R8 = xRy se e somente se y = x² = {(2,4)}
i) R9 = xRy se e somente se y = x = {(2,2)}


b) esse y = 2x não é igual a x2, ou seja, igual a 2?????? foi esse o raciocionio quer usei.

Muito obrigada por corrigir. Meu professor não tem tempo. :/

Não pehpy. y = 2x significa que y é o dobro de x.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Correção de exercicfio

Mensagempor pehpy » Qua Mai 02, 2012 06:25

Tá certo. 2x = 2.x (2 vezes x), né?

Tem mais alguns exercicios que eu respondi, ou ao menos tentei. Se voce poder corrigir:

02) Identifique quais pares ordenados pertencem a cada uma das relações binárias R em |N abaixo:
a) xRy se e somente se x + y < 7: (1, 3), (2, 5), (3, 3), (4, 4). Somente (1,3), (3,3) pertencem
b) xRy se e somente se x = y + 2; (0, 2), (4, 4), (6, 3), (5, 3). Somente (5,3) pertecem.
c) xRy se e somente se 2x + 3y = 10; (5, 0), (2, 2), (3, 1), (1, 3). Somente (5,0), (2,2) pertencem
d) xRy se e somente se y é um quadrado perfeito; (1, 1), (4, 2), (3, 9), (25, 5). Somente (1,1), (3,9), pertencem

03) Sejam S = {1, 2, 3, 4 } e T = {1, 3, 5}, determine R = xRy se e somente se x < Y.
{(1,3), (2,3), (1,5), (2,5), (3,5), (4,5)}

04) Sejam S = {2, 3, 4, 5} e T = {3, 6, 7, 10}, determine R = xRy se e somente se x divide y.
{(2,6), (2,10), (3,3), (3,6), (3,10), (4,6), (4,10), (5,6), (5,10)}

05) Quando é que uma relação R em S não é reflexiva?
R não é simétrica quando algum elemento de S não se relaciona consigo mesmo.

06) Sejam S = {1, 2, 3, 4} e R = {(1, 1), (1, 3), (2, 2), (3, 1), (4, 4)}, R é reflexiva?
R não é reflexiva, pois 3R3 não pertence a R.

07) Seja S = {1, 2, 3}, diga se cada uma das relações abaixo são ou não reflexivas:
a) R1 = {(1, 2), (3, 2), (2, 2), (2, 3)}. R não é reflexiva, pois 1R1 e 3R3 não pertence a R.
b) R2 = {(1, 2), (2, 3), (1, 3)}. R não é reflexiva, pois 1R1, 2R2 e 3R3 não pertence a R.
c) R3 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. É reflexiva.
d) R4 = {(1, 2)}. Não é, pois só tem um par.
e) R5 = S X S. É reflexiva.

08) Quando uma relação binária R em S não é simétrica?
R é simétrica quando, xRy mas yRx não, ou quando yRx mas xRy não.

09) Sejam S = {1, 2, 3, 4} e R = {(1, 2), (3, 4), (2, 1), (3, 3), R é simétrica?
R não é simétrica, pois 3R4 mas 4R3 não.

10) Sejam S = {1, 2, 3} , diga se cada uma das relações a seguir é ou não simétrica:
a) R1 = {(1, 1), (2, 1), (2, 2), (3, 2), (2, 3)}. É simétrica.
b) R2 = {(1, 1)}. Não é, pois só tem um par.
c) R3 = {(1, 2)}. Não é, pois só tem um par.
d) R4 = {(1, 2), (3, 2), (2, 3)}. R não é simétrica, pois 1R2 mas 2R1 não.
e) R5 = S X S. É simétrica.


Cara, muito obrigada por me ajudar. Tem prova sexta e o assunto que vai cair é:
Propriedades reflexiva, simétrica e transitiva.
Matrizes de Permutação
Ciclos de permutação
Composição de funções

Tô DESESPERADA!!!


danjr5 escreveu:
pehpy escreveu:
danjr5 escreveu:
pehpy escreveu:Por favor alguém pode olhar o exercicio e me dizer se respondi certo ou onde foi que eu errei?

Exercícios
01) Sejam S = {1, 2} e T = {2, 3, 4}, determine:
a) R1 = xRy se e somente se x + y for par. = {(1,3), (2,2), (2,4)}
b) R2 = xRy se e somente se y = 2x = {(2,2), (2,3), (2,4)} ==========================> essa contém erro. Mostre como a fez!!
c) R3 = xRy se e somente se x divide y. = {(1,2), (1,4), (2,2), (2,4)} =================> Esqueceu (1,3)
d) R4 = xRy se e somente se x <ou igual y = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}
e) R5 = xRy se e somente se x > y = ? ==========================================> { }
f) R6 = xRy se e somente se y = x + 1 = {(1,2), (2,3)}
g) R7 = xRy se e somente se y = x² + 1 = {(1,2)}
h) R8 = xRy se e somente se y = x² = {(2,4)}
i) R9 = xRy se e somente se y = x = {(2,2)}


b) esse y = 2x não é igual a x2, ou seja, igual a 2?????? foi esse o raciocionio quer usei.

Muito obrigada por corrigir. Meu professor não tem tempo. :/

Não pehpy. y = 2x significa que y é o dobro de x.
"... se o homem animado do espírito científico deseja sem dúvida saber, é para poder em seguida melhor perguntar."
(Gaston Bachelard)
Avatar do usuário
pehpy
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Abr 30, 2012 07:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Correção de exercicfio

Mensagempor DanielFerreira » Qui Mai 03, 2012 21:20

pehpy escreveu:Tá certo. 2x = 2.x (2 vezes x), né?
sim

Tem mais alguns exercicios que eu respondi, ou ao menos tentei. Se voce poder corrigir:

Certa ===> 02) Identifique quais pares ordenados pertencem a cada uma das relações binárias R em |N abaixo:
a) xRy se e somente se x + y < 7: (1, 3), (2, 5), (3, 3), (4, 4). Somente (1,3), (3,3) pertencem
b) xRy se e somente se x = y + 2; (0, 2), (4, 4), (6, 3), (5, 3). Somente (5,3) pertecem.
c) xRy se e somente se 2x + 3y = 10; (5, 0), (2, 2), (3, 1), (1, 3). Somente (5,0), (2,2) pertencem
d) xRy se e somente se y é um quadrado perfeito; (1, 1), (4, 2), (3, 9), (25, 5). Somente (1,1), (3,9), pertencem


Certa ===> 03) Sejam S = {1, 2, 3, 4 } e T = {1, 3, 5}, determine R = xRy se e somente se x < Y.
{(1,3), (2,3), (1,5), (2,5), (3,5), (4,5)}

Pehpy, x deve dividir y, ou seja, a divisão deverá ser exata. As destacadas em negrito estão certas ===> 04) Sejam S = {2, 3, 4, 5} e T = {3, 6, 7, 10}, determine R = xRy se e somente se x divide y.
{(2,6), (2,10), (3,3), (3,6), (3,10), (4,6), (4,10), (5,6), (5,10)}

05) Quando é que uma relação R em S não é reflexiva?
R não é simétrica quando algum elemento de S não se relaciona consigo mesmo.

06) Sejam S = {1, 2, 3, 4} e R = {(1, 1), (1, 3), (2, 2), (3, 1), (4, 4)}, R é reflexiva?
R não é reflexiva, pois 3R3 não pertence a R.

07) Seja S = {1, 2, 3}, diga se cada uma das relações abaixo são ou não reflexivas:
a) R1 = {(1, 2), (3, 2), (2, 2), (2, 3)}. R não é reflexiva, pois 1R1 e 3R3 não pertence a R.
b) R2 = {(1, 2), (2, 3), (1, 3)}. R não é reflexiva, pois 1R1, 2R2 e 3R3 não pertence a R.
c) R3 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. É reflexiva.
d) R4 = {(1, 2)}. Não é, pois só tem um par.
e) R5 = S X S. É reflexiva.

08) Quando uma relação binária R em S não é simétrica?
R é simétrica quando, xRy mas yRx não, ou quando yRx mas xRy não.

09) Sejam S = {1, 2, 3, 4} e R = {(1, 2), (3, 4), (2, 1), (3, 3), R é simétrica?
R não é simétrica, pois 3R4 mas 4R3 não.

10) Sejam S = {1, 2, 3} , diga se cada uma das relações a seguir é ou não simétrica:
a) R1 = {(1, 1), (2, 1), (2, 2), (3, 2), (2, 3)}. É simétrica.
b) R2 = {(1, 1)}. Não é, pois só tem um par.
c) R3 = {(1, 2)}. Não é, pois só tem um par.
d) R4 = {(1, 2), (3, 2), (2, 3)}. R não é simétrica, pois 1R2 mas 2R1 não.
e) R5 = S X S. É simétrica.


Cara, muito obrigada por me ajudar. Tem prova sexta e o assunto que vai cair é:
Propriedades reflexiva, simétrica e transitiva.
Matrizes de Permutação
Ciclos de permutação
Composição de funções

Tô DESESPERADA!!!

Desculpe não poder ajudar nas outras, já não me lembro bem desses conceitos. Rsrsr
Se não tivesse tão em cima, seria mais fácil!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D