por Kleveland Cristian » Seg Abr 30, 2012 12:48
Primeiramente, bom dia!!!

Minha dúvida é quanto a resolução da questão a seguir:
(UECE) Se n= (-1/2 sen ?/6 + 1 + sen ?/3 cos ?/6 ) : ( -1/2 cos ?/6 -1 +sen ?/3 sen ?/6), então n² + 1 é igual a :
(A)2 (B) 7/3 (C) 4 (D) 19/3
Eu resolvi deste modo:
sen ?/6 =0,5
sen ?/3 = 0,866
cos ?/6 =0,866
n= (-1/2*0,5 +1 + 0,866*0,866):(-1/2*0,866 -1 + 0,866*0,5)
n= 1,5: (-1)
n= -1,5
Portanto n² + 1 = (-1,5)² +1 = 3,25
No entanto, nehuma das alternativas apresenta esse valor. Em que parte do cálculo eu errei? Já verifiquei se digitei a conta corretamente e revisei cada passo, mas mesmo assim sempre dá o mesmo resultado.
Gostaria que alguem me explicasse a forma correta de resolver esse problema.
Grato
-
Kleveland Cristian
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 30, 2012 12:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
por DanielFerreira » Ter Mai 01, 2012 00:04
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Kleveland Cristian » Ter Mai 01, 2012 14:59
Olá,amigo!!! Gostaria de saber se sem os parênteses, o resultado seria o mesmo?
Aguardo respostas
-
Kleveland Cristian
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 30, 2012 12:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
por DanielFerreira » Ter Mai 01, 2012 15:02
Kleveland Cristian escreveu:Olá,amigo!!! Gostaria de saber se sem os parênteses, o resultado seria o mesmo?
Aguardo respostas
Se está se referindo aos parênteses de
sen e
cos, a resposta é sim!
Fiz uso deles para melhorar a visualização.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Expressão Trigonométrica
por Anderson Alves » Dom Mar 04, 2012 22:21
- 2 Respostas
- 1771 Exibições
- Última mensagem por Anderson Alves

Dom Mar 04, 2012 23:27
Trigonometria
-
- Expressão Trigonométrica
por Pri Ferreira » Seg Abr 09, 2012 15:44
- 1 Respostas
- 1248 Exibições
- Última mensagem por LuizAquino

Sex Abr 13, 2012 12:56
Trigonometria
-
- Expressão Trigonométrica
por Man Utd » Sáb Jun 15, 2013 20:45
- 0 Respostas
- 787 Exibições
- Última mensagem por Man Utd

Sáb Jun 15, 2013 20:45
Trigonometria
-
- Derivar expressão trigonometrica
por joaofonseca » Qua Nov 30, 2011 22:29
- 1 Respostas
- 1215 Exibições
- Última mensagem por MarceloFantini

Qui Dez 01, 2011 01:45
Trigonometria
-
- Trigonometria: Cálculo da Expressão Trigonométrica
por leotecco » Qui Mai 21, 2015 19:59
- 0 Respostas
- 1715 Exibições
- Última mensagem por leotecco

Qui Mai 21, 2015 19:59
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.