• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relações trigonometricas

relações trigonometricas

Mensagempor MERLAYNE » Qui Abr 26, 2012 17:00

(Ufg 2006) Certas combinações entre as funções {e}^{x} e {e}^{-x}. (onde "e" é o número de Euler, x \epsilon |R) surgem em diversas áreas, como Matemática, Engenharia e Física. O seno hiperbólico e o cosseno hiperbólico são definidos por:

senh \left(x \right) = \frac{\left({e}^{x} - {e}^{-x} \right)}{2} e cosh \left(x \right) = \frac{\left({e}^{x} + {e}^{-x} \right)}{2}



Então, {cosh}^{2}\left(x \right) - {senh}^{2}\left(x \right) é igual a:


PS: NÃO SEI O QUE É COSSENO E SENO HIPERBOLICO
MERLAYNE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Mar 28, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relações trigonometricas

Mensagempor nakagumahissao » Qui Abr 26, 2012 20:21

Em primeiro lugar, a definição de seno hiperbólico e cosseno hiperbólico já foi dado no enunciado do problema. Agora, resolvendo-o, temos:

{cosh }^{2}(x) - {senh}^{2}(x) = \frac{({e}^{x} + {e}^{-x})^{2} }{4} + \frac{({e}^{x} - {e}^{-x})^{2} }{4}\Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = \frac{({e}^{2x} + 2 + {e}^{-2x}) }{4} + \frac{({e}^{2x} - 2 + {e}^{-2x}) }{4} \Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = \frac{(2{e}^{2x} + 2{e}^{-2x})}{4} =  \frac{({e}^{2x} + {e}^{-2x})}{2}

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) =  \frac{({e}^{2x} + {e}^{-2x})}{2}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: relações trigonometricas

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:27

nakagumahissao escreveu:Em primeiro lugar, a definição de seno hiperbólico e cosseno hiperbólico já foi dado no enunciado do problema. Agora, resolvendo-o, temos:

{cosh }^{2}(x) - {senh}^{2}(x) = \frac{({e}^{x} + {e}^{-x})^{2} }{4} + \frac{({e}^{x} - {e}^{-x})^{2} }{4}\Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = \frac{({e}^{2x} + 2 + {e}^{-2x}) }{4} + \frac{({e}^{2x} - 2 + {e}^{-2x}) }{4} \Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = \frac{(2{e}^{2x} + 2{e}^{-2x})}{4} =  \frac{({e}^{2x} + {e}^{-2x})}{2}

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) =  \frac{({e}^{2x} + {e}^{-2x})}{2}

O sinal entre as frações é negativo!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: relações trigonometricas

Mensagempor nakagumahissao » Qui Abr 26, 2012 20:53

Tem toda razão danjr., Obrigado.


Eis a resolução correta:


{cosh }^{2}(x) - {senh}^{2}(x) = \frac{({e}^{x} + {e}^{-x})^{2} }{4} - \frac{({e}^{x} - {e}^{-x})^{2} }{4}\Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = \frac{({e}^{2x} + 2 + {e}^{-2x}) }{4} - \frac{({e}^{2x} - 2 + {e}^{-2x}) }{4} \Rightarrow

\Rightarrow {cosh}^{2}(x) - {senh}^{2}(x) = 1
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: relações trigonometricas

Mensagempor DanielFerreira » Qui Abr 26, 2012 20:56

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: relações trigonometricas

Mensagempor MERLAYNE » Qua Mai 09, 2012 10:59

perfeito! muito obrigada ;D
MERLAYNE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Mar 28, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}