• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo do comprimento do arco.

Integral Definida, por favor ajudem

Mensagempor brunojorge29 » Seg Abr 23, 2012 11:21

\int_{0}^{4}\frac{\sqrt[2]{{x}^{4}+1}}{{x}^{2}}

parei neste ponto, estou tentando calcular o comprimento de um arco
se puderem ajudar agradeço...
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Definida, por favor ajudem

Mensagempor Russman » Seg Abr 23, 2012 19:44

Brunojorge29, acredito que esta integral está mtu complicada para o calculo do comprimento de um arco. Tente postar o problema completo, pois talvez vc tenha interpretado algo errado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Calculo do comprimento do arco.

Mensagempor brunojorge29 » Seg Abr 23, 2012 20:57

Calcule o comprimento do arco de \frac{1}{x} onde os pontos vao de 0,4 a 4.

Por favor essa é uma integral muito dificil.
Vcs sao os unicos que podem me ajudar a resolver esse calculo.
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Calculo do comprimento do arco.

Mensagempor Russman » Seg Abr 23, 2012 22:32

A integral para este cálculo é

S=\int_{x=a}^{x=b}\sqrt[]{1+\frac{1}{{x}^{4}}} dx .

Bem complicado. Só te digo que em x=0 a função não se define assim um dos limites de integração não pode ser 0.

Da uma olhada aqui: http://www.wolframalpha.com/input/?i=in ... %2F2%29+dx
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)