• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo 1 - Derivada

Cálculo 1 - Derivada

Mensagempor ludimila1 nobre » Sáb Abr 21, 2012 20:43

Encontrei um resultado mas não tenho certeza que está certo. Alguém pode me ajudar? O problema é o seguinte:
Para quais valores de a e b, a reta 2x + y = b é tangente à parábola y = a{x}^{2} quando x = 2?
ludimila1 nobre
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 17, 2012 23:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Cálculo 1 - Derivada

Mensagempor Russman » Sáb Abr 21, 2012 21:13

ludimila1 nobre escreveu:Encontrei um resultado mas não tenho certeza que está certo. Alguém pode me ajudar? O problema é o seguinte:
Para quais valores de a e b, a reta 2x + y = b é tangente à parábola y = a{x}^{2} quando x = 2?


Seja g(x) a reta tangente a curva f(x) no ponto P(f(\epsilon),\epsilon). Então,

g(x) = f'(\epsilon)(x-\epsilon)+f(\epsilon).

Assim,

f'(\epsilon) = -2
f(\epsilon) - \epsilon .f'(\epsilon) = b .

Da primeira, f(x) = a{x}^{2} \Rightarrow f'(x) = 2ax\Rightarrow f'(x=\epsilon) = 2a\epsilon = -2 \therefore a= \frac{-1}{\epsilon}=\frac{-1}{2} , \epsilon=2 .

Da segunda, f(\epsilon) - \epsilon.f'(\epsilon) = b \Rightarrow 4a - 2.2.a.2 = b \therefore b = 2 , a = \frac{-1}{2}.

Portanto a função é f(x) = \frac{-{x}^{2}}{2} e a reta tangente em x=2 é y=-2x+2
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.