Estou com problemas para resolver isto:
![\frac{8{x}^{\frac{3}{5}}-2\sqrt[3]{{x}^{2}}+{x}^{\frac{4}{5}}}{\sqrt[2]{{x}^{5}}} \frac{8{x}^{\frac{3}{5}}-2\sqrt[3]{{x}^{2}}+{x}^{\frac{4}{5}}}{\sqrt[2]{{x}^{5}}}](/latexrender/pictures/e143555ff719c2230efe0af738ac184b.png)
**Divida, deixando aparecer somente expoentes positivos
Separei cada membro de cima com o mesmo denominador, dividi cada um dos três separadamente e encontrei isto:

Não sei como simplificar mais do que isso e a resposta no livro é
.Tentei resolver pelo método das chaves mas obtive o mesmo resultado. Há algum outro método para se chegar ao resultado do livro ou algo mais a simplificar de até onde calculei ?

![\frac{8x^{\frac{3}{5}} - 2\sqrt[3]{x^2} + x^{\frac{4}{5}}}{\sqrt[]{x^5}} = \frac{8x^{\frac{3}{5}} - 2\sqrt[3]{x^2} + x^{\frac{4}{5}}}{\sqrt[]{x^5}} =](/latexrender/pictures/1a18ed8f0b2fb137f222168efa9eb9b5.png)



.
em evidência, veja:


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)