• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar por indução

Provar por indução

Mensagempor Cleyson007 » Sex Abr 13, 2012 15:27

Boa tarde a todos!

Imagem

Estou tentando resolver assim:

Para n=1 a fórmula é válida, pois: n(n+1)(n+2)/3 = 2

Sei que devemos supor que a fórmula é válida para n, logo também será válida para (n+1).

Preciso de ajuda para prosseguir..

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Provar por indução

Mensagempor Guill » Sex Abr 13, 2012 15:59

1º - Provar para n = 1:

{S}_{n}=2 -----> Verdadeiro



2º - Supondo que seja verdade para n, presisamos provar que é verdade para n + 1:

{S}_{n}=\frac{n(n+1)(n+2)}{3}

{S}_{n+1}=\frac{n(n+1)(n+2)}{3}+(n+1)(n+2)

{S}_{n+1}=\frac{n(n+1)(n+2)}{3}+\frac{3(n+1)(n+2)}{3}

{S}_{n+1}=\frac{n(n+1)(n+2)+3(n+1)(n+2)}{3}

{S}_{n+1}=\frac{(n+3)(n+1)(n+2)}{3} ----> Verdade
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Provar por indução

Mensagempor Guill » Sex Abr 13, 2012 16:11

Mas na verdade, não existia a necessidade de usar da indução:

1.2 + 2.3 + 3.4 + 4.5 + 5.6 + ... + n(n + 1)

(1.1 + 1) + (2.2 + 2) + (3.3 + 3) + ... + (n.n + n)


Ordenando os termos:

1² + 2² + 3² + ... + n² + 1 + 2 + 3 + ... + n


Os termos conhecidos podem ser somados:

\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}

\frac{n(n+1)(2n+1)}{6}+\frac{3n(n+1)}{6}=\frac{n(n+1)}{6}.(2n+4)

\frac{n(n+1)(n+2)}{3}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Provar por indução

Mensagempor Cleyson007 » Sex Abr 13, 2012 16:17

Boa tarde Guill!

Muito obrigado pela resolução, entendi perfeitamente :y:

Na verdade, eu estava com dúvida na montagem de Sn+1.

Para mim, o outro método é importante em função de conhecimento dado que em minha prova terei que provar utilizando indução.

Mais uma vez, obrigado!

Atenciosamente,

Cleyson007.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}