por Raphaela_sf » Qui Abr 05, 2012 19:11
Boa tarde,
Tenho dúvidas sobre a forma numérica (intuitiva) de encontrar um limite e a forma lim f(x) para x --> a = f(a).
Sendo o valor numérico, impreciso, ocasionando erros, faz-se necessário o uso de 'ferramentas algébricas'.
Para o exemplo, f(x) = (x² + 4x) para x-->2. Sei que o limite é igual a 12 apenas pelo cálculo de f(2). Se há uma indeterminação só posso realizar este processo quando simplificada a equação. Existe alguma outra situação que me impeça de utilizar esse meio, ou mesmo a forma intuitiva com os limites laterais?
Muito Obrigada!
-
Raphaela_sf
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 05, 2012 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por LuizAquino » Qui Abr 05, 2012 20:56
Raphaela_sf escreveu:Tenho dúvidas sobre a forma numérica (intuitiva) de encontrar um limite e a forma lim f(x) para x --> a = f(a).
Sendo o valor numérico, impreciso, ocasionando erros, faz-se necessário o uso de 'ferramentas algébricas'.
Para o exemplo, f(x) = (x² + 4x) para x-->2. Sei que o limite é igual a 12 apenas pelo cálculo de f(2). Se há uma indeterminação só posso realizar este processo quando simplificada a equação. Existe alguma outra situação que me impeça de utilizar esse meio, ou mesmo a forma intuitiva com os limites laterais?
Não existe. Sempre podemos aplicar uma das estratégias: numérica; algébrica. Lembrando que a estratégia algébrica é preferível, pois a numérica é imprecisa.
Além disso, vale lembrar que você não "
simplifica a equação". Não há uma
equação. O que há é uma
função, que você tenta simplificar a sua
expressão toda vez que no limite aparece uma indeterminação.
Por exemplo, considere a função

. Ao tentar calcular

, temos uma indeterminação do tipo 0/0.
Podemos então efetuar a seguinte simplificação:

Note que agora no limite há uma outra função, que seria por exemplo g(x) = x + 1. Não aparece mais a função f(x) original. Entretanto, por esse desenvolvimento podemos dizer que:

Mas como a função g é contínua (você ainda deve estudar o conceito de continuidade), podemos dizer que

.
Conclusão:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Raphaela_sf » Sex Abr 06, 2012 13:29
Desculpe, mas a noção de continuidade me parece vaga.
Como saber se uma função é contínua?
Sei que quando

f(x) = f(a), essa função é contínua em
a.
Porque, como você disse g(x) é contínua e por isso se pode aplicar a definição algébrica de limite.
Isto é, g(x) = x+1, você verificou a função, a classificou como contínua e aplicou a definição.
Ou estou entendendo errado?
Muito Obrigada mesmo!
-
Raphaela_sf
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 05, 2012 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por LuizAquino » Sex Abr 06, 2012 19:17
Raphaela_sf escreveu:Desculpe, mas a noção de continuidade me parece vaga.
Como saber se uma função é contínua?
Sei que quando

f(x) = f(a), essa função é contínua em
a.
Eu recomendo que você assista a videoaula "04. Cálculo I - Limites e Continuidade". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquinoSe após assistir essa videoaula a dúvida continuar, então poste aqui novamente.
Raphaela_sf escreveu:Porque, como você disse g(x) é contínua e por isso se pode aplicar a definição algébrica de limite.
O que você está chamando de "definição algébrica" de limite? Por acaso seria:

? Isso não é a "definição algébrica" de limite. Na verdade, como você mesmo já disse acima, isso aparece na definição de continuidade de f no ponto x = a.
Raphaela_sf escreveu:Isto é, g(x) = x+1, você verificou a função, a classificou como contínua e aplicou a definição.
Ou estou entendendo errado?
Está correto. Ao verificar que g(x) é contínua, podemos aplicar a definição de continuidade e escrever por exemplo que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- conceito de integral e limite
por OtavioBonassi » Sex Jan 07, 2011 15:52
- 11 Respostas
- 8337 Exibições
- Última mensagem por OtavioBonassi

Dom Jan 09, 2011 22:47
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Conceito de Existência
por eli83 » Qua Out 10, 2012 10:33
- 4 Respostas
- 2413 Exibições
- Última mensagem por young_jedi

Qui Out 11, 2012 17:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6476 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4558 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4850 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.