por shyzum » Qua Mar 21, 2012 18:07
encontrei o seguinte exercício que eu não consigo fazer de jeito nenhum, por favor alguem me ajude

-
shyzum
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Mar 11, 2012 18:22
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia
- Andamento: cursando
por TAE » Qua Mar 21, 2012 20:51
...
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
-
TAE
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Ter Mar 20, 2012 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: TÉC. ELETRÔNICA
- Andamento: formado
por Zetsu PN » Seg Abr 02, 2012 23:14
| x² - 1 | < x
Analisando o primeiro membro temos que:
| x² - 1 | = x² - 1 <=>

ou

| x² - 1 | = 1 - x² <=>

Para qualquer valor real de x elemento do intervalo [-1,1] a inequação será válida. Deve-se alisar, pois, para os valores do intervalos

ou

x² - x - 1 < 0
(delta) = 1 + 4 = 5
x' =
![\frac{(1 + \sqrt[2]{5} )}{2} \frac{(1 + \sqrt[2]{5} )}{2}](/latexrender/pictures/fd54137b121406ab2c886791018cd4c8.png)
x" =
![\frac{(1 - \sqrt[2]{5} )}{2} \frac{(1 - \sqrt[2]{5} )}{2}](/latexrender/pictures/85b8b071ae4c51e9c0bad59e3d04b357.png)
Portanto, a solução da inequação será o valor negativo de y, ou seja, o interior das raízes. Sendo assim:
S = { x e R |
![\frac{(1 + \sqrt[2]{5} )}{2} \frac{(1 + \sqrt[2]{5} )}{2}](/latexrender/pictures/fd54137b121406ab2c886791018cd4c8.png)
< x <
![\frac{(1 - \sqrt[2]{5} )}{2} \frac{(1 - \sqrt[2]{5} )}{2}](/latexrender/pictures/85b8b071ae4c51e9c0bad59e3d04b357.png)
}
(Sou novo no fórum e usei o site
http://www.ajudamatematica.com/equationeditor/ para formular. Fui didático?

)
Editado pela última vez por
Zetsu PN em Seg Abr 02, 2012 23:41, em um total de 1 vez.
-
Zetsu PN
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 02, 2012 22:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Abr 02, 2012 23:32
Falta apenas escrever [ tex] e [/ tex] sem o espaço entre as fórmulas para que o fórum transforme-as em imagens.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Inequação Modular] Alguém por favor me ajuda nessa questão?
por FuturoFuturista » Ter Jan 22, 2013 21:27
- 1 Respostas
- 2648 Exibições
- Última mensagem por e8group

Ter Jan 22, 2013 22:15
Inequações
-
- [Ajuda] Inequação modular
por wallsoares » Seg Mar 21, 2011 19:57
- 1 Respostas
- 1389 Exibições
- Última mensagem por Elcioschin

Seg Mar 21, 2011 20:14
Álgebra Elementar
-
- n sei resolver essa funçao modular com inequaçao(ajuda)
por Fabricio dalla » Qua Mar 09, 2011 23:46
- 4 Respostas
- 3293 Exibições
- Última mensagem por Renato_RJ

Sex Mar 11, 2011 15:00
Funções
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7401 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- inequação modular
por manuoliveira » Dom Ago 22, 2010 22:30
- 1 Respostas
- 3481 Exibições
- Última mensagem por Dan

Seg Ago 23, 2010 15:38
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.