por AlexandreTS » Sex Mar 30, 2012 18:01
Estou com dificuldades em um problema relacionado às mudanças de variáveis em integrais.
Vou dizer o exercício e o que eu pensei em fazer:
Determine o volume da região limitada pela superfície sqrt(x) + sqrt(y) + sqrt(z) = 1 e pelos planos coordenados.
Como o assunto é de mudanças de variáveis, resolvi começar por isso. Tenho um algoritmo pra resolução desses exercícios que é assim:
1) Fazer a mudança de variáveis para facilitar a integral;
2) Calcular o Jacobiano;
3) Definir as regiões R (no caso, para o sistema xyz) e S (no caso, para o sistema uvw)
4) Calcular a integral
Pois bem;
1) Fiz a seguinte mudança de variáveis: x = uˆ2, y = vˆ2, z = wˆ2
2) Calculei o jacobiano sem dificuldades já que a matriz é muito simples, todos os elementos acima e abaixo da diagonal principal são 0. O resultado é 8uvw
3) Nessa parte eu emperro. Sei que x, y e z variam de 0 a 1 no máximo, mas não consigo definir as regiões R nem a região S, tentei usar todas de 0 a 1, mesmo sabendo que estava errado, pra praticar a resolução da integral, mas essa parte eu acho fácil. O difícil e descobrir os limites de integração!
Pensei em fazer o seguinte: 0 <= u <= 1, 0 <= v <= 1-u, 0 <= w <= 1 - u - v, mas sinceramente não acho que faça muito sentido e resolvi não levar pra frente
Preciso muito de ajuda!
-
AlexandreTS
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 30, 2012 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Sex Mar 30, 2012 18:48
AlexandreTS escreveu:Determine o volume da região limitada pela superfície sqrt(x) + sqrt(y) + sqrt(z) = 1 e pelos planos coordenados.
AlexandreTS escreveu:Como o assunto é de mudanças de variáveis, resolvi começar por isso. Tenho um algoritmo pra resolução desses exercícios que é assim:
1) Fazer a mudança de variáveis para facilitar a integral;
2) Calcular o Jacobiano;
3) Definir as regiões R (no caso, para o sistema xyz) e S (no caso, para o sistema uvw)
4) Calcular a integral
Pois bem;
1) Fiz a seguinte mudança de variáveis: x = uˆ2, y = vˆ2, z = wˆ2
2) Calculei o jacobiano sem dificuldades já que a matriz é muito simples, todos os elementos acima e abaixo da diagonal principal são 0. O resultado é 8uvw
3) Nessa parte eu emperro. Sei que x, y e z variam de 0 a 1 no máximo, mas não consigo definir as regiões R nem a região S, tentei usar todas de 0 a 1, mesmo sabendo que estava errado, pra praticar a resolução da integral, mas essa parte eu acho fácil. O difícil e descobrir os limites de integração!
Pensei em fazer o seguinte: 0 <= u <= 1, 0 <= v <= 1-u, 0 <= w <= 1 - u - v, mas sinceramente não acho que faça muito sentido e resolvi não levar pra frente
Note que:

Agora tente montar a região
S.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites de Integração] Como achar os limites de integração?
por Miine_J » Sáb Nov 10, 2018 03:13
- 2 Respostas
- 19505 Exibições
- Última mensagem por Miine_J

Dom Nov 11, 2018 08:17
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variável em exercício de integração
por Skyliner » Qua Nov 25, 2009 23:02
- 2 Respostas
- 3360 Exibições
- Última mensagem por Skyliner

Qui Nov 26, 2009 01:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral Tripla - mudança de variáveis
por marinalcd » Sáb Abr 09, 2016 00:16
- 0 Respostas
- 1839 Exibições
- Última mensagem por marinalcd

Sáb Abr 09, 2016 00:16
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variaveis em integrais duplas e triplas
por luiz3d » Qui Out 08, 2009 17:09
- 0 Respostas
- 3756 Exibições
- Última mensagem por luiz3d

Qui Out 08, 2009 17:09
Cálculo: Limites, Derivadas e Integrais
-
- Separação de variáveis e Integração
por Jhenrique » Qui Mai 09, 2013 20:34
- 6 Respostas
- 3459 Exibições
- Última mensagem por Jhenrique

Sáb Mai 11, 2013 15:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.