• Anúncio Global
    Respostas
    Exibições
    Última mensagem

redução ao 1 quadrante

redução ao 1 quadrante

Mensagempor MERLAYNE » Qui Mar 29, 2012 01:46

A EXPRESSÃO sen (7pi/6)+sen ( x+11)*cotg (x +11pi/2) /cos (9pi - x), com xE[0,pi/4], é equivalente a:
MERLAYNE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Mar 28, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: redução ao 1 quadrante

Mensagempor MarceloFantini » Qui Mar 29, 2012 10:43

Merlayne, sua expressão está difícil de ler. Por favor, leia as regras do fórum, em especial a regra número 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: redução ao 1 quadrante

Mensagempor MERLAYNE » Ter Abr 03, 2012 09:20

MarceloFantini escreveu:Merlayne, sua expressão está difícil de ler. Por favor, leia as regras do fórum, em especial a regra número 2.



ok ai está reescrita: sen (7pi/6)+sen (x+11) . cotg (x +11pi/2) /cos (9pi - x), com xE[0,?/4], é equivalente a:
Editado pela última vez por MERLAYNE em Qua Abr 04, 2012 19:04, em um total de 1 vez.
MERLAYNE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Mar 28, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: redução ao 1 quadrante

Mensagempor MarceloFantini » Ter Abr 03, 2012 14:57

Merlayne, você não leu as regras. Sua expressão não está em LaTeX e você não postou suas tentativas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: redução ao 1 quadrante

Mensagempor MERLAYNE » Qua Abr 04, 2012 19:06

MarceloFantini escreveu:Merlayne, você não leu as regras. Sua expressão não está em LaTeX e você não postou suas tentativas.


Não postei tentativas pois, não sei fazer! Se soubesse não estaria aqui tirando dúvidas. Obrigada pela correção em relação ao LaTeX.
MERLAYNE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Mar 28, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: redução ao 1 quadrante

Mensagempor MarceloFantini » Qua Abr 04, 2012 19:16

Não perguntar se você sabia fazer, perguntou o que você tentou fazer, se tentou manipular as funções, se sabe o que é uma soma de arcos, etc. A expressão correta em LaTeX é

sen \left( \frac{\pi}{6} \right) + \frac{sen \left(x + \frac{11 \pi}{2} \right) \cdot cotg \left( x + \frac{11 \pi}{2} \right) }{\cos \left( 9 \pi - x \right)} com x \in \left[0,\frac{\pi}{4} \right].

As dicas são: lembre-se que cotg \, x = \frac{\cos x}{sen \, x} e \cos (a+b) = \cos a \cos b - sen \, a \, sen \, b.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}