• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] indeterminação?

[Limites] indeterminação?

Mensagempor rafaelbr91 » Ter Mar 27, 2012 18:48

Lim x^4 . (cos 2/x) quando x->0 é zero. Mas a minha dúvida consiste em: Pelo teorema do confronto eu cheguei a essa resposta, mas eu poderia chegar a mesma resposta apenas substituindo x=0? pq dai daria lim 0^4 . (cos 2/0) que equivale a 0 . infinito = 0 , certo? Obrigado!
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] indeterminação?

Mensagempor MarceloFantini » Ter Mar 27, 2012 19:02

Não é possível "substituir" pois é uma indeterminação, não é verdade que 0 \cdot \infty = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limites] indeterminação?

Mensagempor rafaelbr91 » Ter Mar 27, 2012 19:07

Muito obrigado! Estou aprendendo a me dar com essas indeterminações nesse início de estudo de cálculo! :lol:
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] indeterminação?

Mensagempor nietzsche » Ter Mar 27, 2012 19:31

Sua argumentação não está de toda errada. A inderminação não está em 0.infinito = 0, mas em cos (infinito) = ?, que não sabemos oq é pois infinito não é número.

Em "x^4 . (cos 2/x) quando x->0 é zero" lembre-se que cos x é uma função limitada tal que -1 <= cos x <= 1. Então se você multiplicar
0 . cos x, isso será igual zero pra qualquer x escolhido.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59