• Anúncio Global
    Respostas
    Exibições
    Última mensagem

raízes.

raízes.

Mensagempor carolina camargo » Qua Jun 17, 2009 16:39

Na inequação -3x^2+5x+2>0, usando bhaskara encontrei as raízes x'=2 e x"=2/7.
Errei alguma conta? E se não errei há algo que possa fazer pra não resultar uma raíz fracionaria? :?:
Desde já agradeço.
carolina camargo
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 16, 2009 16:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: raízes.

Mensagempor Marcampucio » Qua Jun 17, 2009 16:50

carolina camargo escreveu:Na inequação -3x^2+5x+2>0, usando bhaskara encontrei as raízes x'=2 e x"=2/7.
Errei alguma conta? E se não errei há algo que possa fazer pra não resultar uma raíz fracionaria? :?:
Desde já agradeço.

\Delta=25+24\rightarrow 49

\begin{cases}x=\frac{-5+7}{-6}=-\frac{1}{3}\\x=\frac{-5-7}{-6}=2\end{cases}

f(x)>0\rightarrow -\frac{1}{3}<x<2

a raiz fracionária é definitiva.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: raízes.

Mensagempor Cleyson007 » Qua Jun 17, 2009 17:02

Olá Carolina!

Tirando Bháskara: \Delta={b}^{2}-4ac

{5}^{2}-4(-3)(2)>0

Logo, \Delta=49>0

x>\frac{-5+7}{-6}

Logo, x>-1/3

x<2

Espero ter ajudado!

Um abraço.

Até mais.
Editado pela última vez por Cleyson007 em Qua Jun 17, 2009 18:33, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: raízes.

Mensagempor Marcampucio » Qua Jun 17, 2009 18:26

Atenção Cleyson007,

sua resposta final está errada. É uma parábola com concavidade para baixo.
Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: raízes.

Mensagempor Cleyson007 » Qua Jun 17, 2009 18:32

Boa tarde Marcampucio!

Obrigado por ter corrigido :-O

Já alterei a resposta.

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: raízes.

Mensagempor Molina » Qua Jun 17, 2009 19:01

carolina camargo escreveu:Na inequação -3x^2+5x+2>0, usando bhaskara encontrei as raízes x'=2 e x"=2/7.
Errei alguma conta? E se não errei há algo que possa fazer pra não resultar uma raíz fracionaria? :?:
Desde já agradeço.


Olá Carolina.

Uma forma de verificar se o x' e x'' que você encontrou está certo, é substituindo os valores na equação. Ou seja, onde tiver x você vai substituir pelo valor de x' e posteriormente fazer o mesmo processo com o valor de x'', logo:

1) 3*2^2+5*2+2 é igual a 0?

2) 3*(2/7)^2+5*(2/7)+2 é igual a 0?

Caso as respostas do item 1) e 2) for SIM, significa que as raízes estão corretas.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59