• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em continuidade

Dúvida em continuidade

Mensagempor MirroR » Dom Mar 18, 2012 18:16

Boa tarde. Eu estou cursando o primeiro período do curso de Engenharia, estou utilizando o livro "Um curso de Cálculo, volume 1" pelo Hamilton Luiz Guidorizzi para estudar Cálculo 1.
Nos meus estudos, eu encontrei um problema que não consigo desenvolver

Dado uma função [f(x)=1 + 1/x] precisa-se provar que ela é contínua em p=1.

Eu já tentei várias vezes utilizar da definição elementar de continuidade |f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta para provar que a função é contínua em p=1, mas no decorrer eu não consigo associar o \epsilon ao \delta. Inclusive, já estou mais avançado no assunto e por outros métodos eu conseguiria provar que a função é contínua, porém é requerido o uso da definição de continuidade.

Por gentileza, ajudem-me a chegar à um resultado.
MirroR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 18, 2012 18:00
Localização: Recife
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Dúvida em continuidade

Mensagempor LuizAquino » Dom Mar 18, 2012 21:38

MirroR escreveu:Dado uma função [f(x)=1 + 1/x] precisa-se provar que ela é contínua em p=1.

Eu já tentei várias vezes utilizar da definição elementar de continuidade |f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta para provar que a função é contínua em p=1, mas no decorrer eu não consigo associar o \epsilon ao \delta. Inclusive, já estou mais avançado no assunto e por outros métodos eu conseguiria provar que a função é contínua, porém é requerido o uso da definição de continuidade.


Se f é contínua em x = p, então lembre-se que você precisa provar que:

Para todo \varepsilon > 0 dado, existe \delta > 0 tal que:

|x - p| < \delta \Rightarrow |f(x) - f(p)| < \varepsilon

Note que você escreveu ao contrário:

MirroR escreveu:|f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta


Vejamos agora o desenvolvimento. Note que:

\left|f(x) - f(1)\right| < \varepsilon

\left|\left(1 + \dfrac{1}{x}\right) - \left(1 + \dfrac{1}{1}\right)\right| < \varepsilon

\left|\dfrac{1}{x} - 1\right| < \varepsilon

\left|\dfrac{1 - x}{x}\right| < \varepsilon

\left|\dfrac{-(-1 + x)}{x}\right| < \varepsilon

\left|\dfrac{-1}{x}\right||x - 1| < \varepsilon

\dfrac{1}{|x|}|x - 1| < \varepsilon

Precisamos agora determinar uma constante c tal que \frac{1}{|x|} < c .

Como x está próximo de 1, é razoável dizer que 1- \frac{1}{2} < x < 1 + \frac{1}{2} . Ou seja, temos que |x - 1|< \frac{1}{2} . Note que com isso já estamos escolhendo um valor \delta_1 = \frac{1}{2} .

Além disso, também podemos dizer que \frac{1}{2} < x < \frac{3}{2} . Ou seja, temos \frac{2}{3} < \frac{1}{|x|} < 2 . Desse modo, temos que:

\dfrac{1}{|x|}|x - 1| < 2|x - 1|

Note que se fizermos |x-1| < \frac{\varepsilon}{2} (o que significa que estamos escolhendo um \delta_2 = \frac{\varepsilon}{2}), temos que:

\dfrac{1}{|x|}|x - 1| < 2\frac{\varepsilon}{2}

\dfrac{1}{|x|}|x - 1| < \varepsilon

Como temos dois valores para delta (\delta_1 e \delta_2), devemos tomar o menor deles para garantir que ao mesmo tempo ocorra as duas inequações: |x-1| < \frac{1}{2} e |x-1| < \frac{\varepsilon}{2} .

Isto é, vamos tomar \delta = \min \left\{\dfrac{1}{2},\, \frac{\varepsilon}{2}\right\} .

Agora vamos verificar que essa escolha de \delta funciona.

Se \delta = \min \left\{\dfrac{1}{2},\, \frac{\varepsilon}{2}\right\} , então temos que:

|x - 1| < \delta \Rightarrow \begin{cases} |x - 1| < \dfrac{1}{2} \\ \\ |x - 1| < \dfrac{\varepsilon}{2}\end{cases}

Já havíamos determinado que |x - 1| < \frac{1}{2} \Rightarrow \frac{2}{3} < \frac{1}{|x|} < 2 . Sendo assim, podemos dizer que:

|x - 1| < \delta \Rightarrow \begin{cases} \dfrac{1}{|x|} < 2 \\ \\ |x - 1| < \dfrac{\varepsilon}{2}\end{cases}

Multiplicando membro a membro as duas inequações que aparecem depois da implicação, temos que:

|x - 1| < \delta \Rightarrow  \dfrac{1}{|x|}|x - 1| < 2\dfrac{\varepsilon}{2}

|x - 1| < \delta \Rightarrow  \left|\dfrac{x - 1}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\dfrac{-(1 - x)}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  |-1|\left|\dfrac{1 - x}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\dfrac{1}{x} - 1\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\left(1 + \dfrac{1}{x}\right) - \left(1 + \frac{1}{1}\right) \right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|f(x) - f(1) \right| < \varepsilon
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?