por miumatos » Dom Mar 18, 2012 13:06
Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:

sei que o resultado é

e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.
Agradeço desde já.
-
miumatos
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mar 18, 2012 12:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
por LuizAquino » Dom Mar 18, 2012 13:18
miumatos escreveu:Bom dia pessoal, preciso de uma ajuda para entender a seguinte função:

sei que o resultado é

e a questão pede para provar derivando até a segunda ordem que uma é igual a outra.
já entendo como derivar com numeros mas não consegui associar com este tipo de função.
Você deseja calcular a segunda derivada do produto entre duas funções. Isto é, você deseja calcular

.
Efetuar esse cálculo é o mesmo que fazer
![[(fg)^{\prime}]^{\prime} [(fg)^{\prime}]^{\prime}](/latexrender/pictures/350db2a3bf8316181307de0b5b15aa20.png)
.
Aplicando a regra do produto para derivadas, temos que:

Sendo assim, temos que:
![(fg)^{\prime\prime} = [(fg)^{\prime}]^{\prime} (fg)^{\prime\prime} = [(fg)^{\prime}]^{\prime}](/latexrender/pictures/04d487b63e678689dcf7b1c6f1f7d4af.png)

Aplicando agora a regra da soma para derivadas, temos que:

Aplicando novamente a regra do produto para derivadas, temos que:
![(fg)^{\prime\prime} = [(f^\prime)^\prime g + f^\prime g^\prime] + [f^\prime g^\prime + f (g^\prime)^\prime] (fg)^{\prime\prime} = [(f^\prime)^\prime g + f^\prime g^\prime] + [f^\prime g^\prime + f (g^\prime)^\prime]](/latexrender/pictures/100a0dd9f5de7213d4259287b4eedda0.png)

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por miumatos » Dom Mar 18, 2012 15:29
ok, entendi.
Muito obrigado.
-
miumatos
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mar 18, 2012 12:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada simples
por vanu » Qua Dez 11, 2013 15:03
- 0 Respostas
- 1343 Exibições
- Última mensagem por vanu

Qua Dez 11, 2013 15:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada simples
por vanu » Qua Dez 11, 2013 15:19
- 1 Respostas
- 1671 Exibições
- Última mensagem por e8group

Qua Dez 11, 2013 16:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Duvida simples
por iceman » Ter Set 18, 2012 19:06
- 1 Respostas
- 1505 Exibições
- Última mensagem por Renato_RJ

Ter Set 18, 2012 19:20
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Simples cubo
por Matheus321 » Ter Out 25, 2016 21:13
- 1 Respostas
- 5349 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 26, 2016 18:46
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Questão simples de derivada.
por Gustavo195 » Ter Mai 14, 2013 17:52
- 0 Respostas
- 1534 Exibições
- Última mensagem por Gustavo195

Ter Mai 14, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.