• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Introdução as Equaçoes Diferenciais Ordinárias - Unicidade

Introdução as Equaçoes Diferenciais Ordinárias - Unicidade

Mensagempor dileivas » Qua Mar 14, 2012 21:32

Sinceramente, não entendi o enunciado do exercício, se alguém puder me dar uma luz de como iniciá-lo eu agradeceria muito:

É possível garantir a unicidade de solução para a equação diferencial y^\prime\ = \sqrt {y^2-9} passando pelo ponto (1,4)? E passando pelo ponto (2, -3)? Justifique.

Obrigado! =)
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: Introdução as Equaçoes Diferenciais Ordinárias - Unicida

Mensagempor TheoFerraz » Qua Mar 14, 2012 22:51

dileivas escreveu:Sinceramente, não entendi o enunciado do exercício, se alguém puder me dar uma luz de como iniciá-lo eu agradeceria muito:

É possível garantir a unicidade de solução para a equação diferencial y^\prime\ = \sqrt {y^2-9} passando pelo ponto (1,4)? E passando pelo ponto (2, -3)? Justifique.

Obrigado! =)



É até que simples. é possível resolver a questão sem resolver a equação até... Sempre que o exercicio pedir para "garantir a unicidade" ele quer que voce prove que só existe uma resposta (ou não). No caso ele quer que voce simplesmente verifique: "existe uma só resposta? ou não"

se voce está estudando "introdução às edo's " eu imagino que esse exercicio é teórico mesmo, não é para ser provado resolvendo a equação.

Voce conhece a ideia de "condições de contorno" ? Se sim, deve ser facil responder a pergunta:

Existe só UMA função que passa por (1,4) e resolve a equação diferencial ordinária y^\prime = \sqrt{y^2-9}

quer uma dica? outra forma de escrever a mesma equação é:

y^2 -{y^\prime}^{2} = 9
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Introdução as Equaçoes Diferenciais Ordinárias - Unicida

Mensagempor dileivas » Qui Mar 15, 2012 00:07

Super obrigado, vou tentar resolver e já posto minha solução =D
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.