• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equacao plano tangente

Equacao plano tangente

Mensagempor Flames » Ter Mar 13, 2012 00:10

Bem pessoal eu tenho aqui uma dúvida que não consigo chegar ao resultado pretendido:
\frac{x^2}{4}+\frac{y^2}{9} +\frac{z^2}{4}=3 no ponto (2,-3,2)

Eu fiz as derivadas parciais/gradiente algo como fx (x-x0) + fy (y-y0)+fz (z-z0=0)
Por fx,fy,fz entende-se a derivada parcial no ponto (2,-3,2)...
O final deveria dar algo como:
-3x + 2y  -3z + 18 = 0
E não consegui alcançar tal...
Desculpem algum texto porque latex afffffffffffff
Flames
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 12, 2012 23:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equacao plano tangente

Mensagempor LuizAquino » Ter Mar 13, 2012 11:47

Flames escreveu:Bem pessoal eu tenho aqui uma dúvida que não consigo chegar ao resultado pretendido:
\frac{x^2}{4}+\frac{y^2}{9} +\frac{z^2}{4}=3 no ponto (2,-3,2)

Eu fiz as derivadas parciais/gradiente algo como fx (x-x0) + fy (y-y0)+fz (z-z0=0)
Por fx,fy,fz entende-se a derivada parcial no ponto (2,-3,2)...
O final deveria dar algo como:
-3x + 2y  -3z + 18 = 0
E não consegui alcançar tal...


Envie a sua resolução para que possamos corrigi-la.

Flames escreveu:Desculpem algum texto porque latex afffffffffffff


O LaTeX é ótimo! Por exemplo, sem o LaTeX, a equação que você escreveu acima seria algo como:

(x^2)/4 + (y^2)/9 + (z^2)/4 = 3

É ruim ler nessa forma de escrita! É muito melhor ler simplesmente:

\dfrac{x^2}{4}+\dfrac{y^2}{9} +\dfrac{z^2}{4}=3
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equacao plano tangente

Mensagempor Flames » Ter Mar 13, 2012 20:46

O que fiz foi:
achei a derivada parcial em ordem a x
\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{4}-3=0
dando a derivada
\frac{x}{2} no ponto (2,-3,2) =1
achei a derivada parcial em ordem a y
\frac{2y}{9} no ponto (2,-3,2) =  \frac{-2}{3}
achei a derivada parcial em ordem a z
\frac{z}{2}  no ponto (2,-3,2) = 1
Depois disto fui buscar o ponto (2,-3,2) e substitui em cada derivada parcial juntando no final à formula:
1\times(x-2)+ \frac{-2}{3}\times(y+3)+1\times(z-2)=0
Flames
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 12, 2012 23:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equacao plano tangente

Mensagempor LuizAquino » Ter Mar 13, 2012 21:07

Flames escreveu:O que fiz foi:
achei a derivada parcial em ordem a x
\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{4}-3=0
dando a derivada
\frac{x}{2} no ponto (2,-3,2) =1


Ok.

Flames escreveu:achei a derivada parcial em ordem a y
\frac{2y}{9} no ponto (2,-3,2) =  \frac{-2}{3}


Ok.

Flames escreveu:\frac{z}{2} no ponto (2,-3,2) = 1


Ok.

Flames escreveu:Depois disto fui buscar o ponto (2,-3,2) e substitui em cada derivada parcial juntando no final à formula:
1\times(x-2)+ \frac{-2}{3}\times(y+3)+1\times(z-2)=0


Ok. Basta continuar a partir daí.

(x-2) - \dfrac{2}{3}(y+3) + (z-2)=0

x - \dfrac{2}{3}y + z - 2 - 2 - 2 =0

x - \dfrac{2}{3}y + z - 6 =0

Esta é uma resposta correta. Mas se você quiser obter a resposta apresentada no gabarito, então basta multiplicar ambos os membros da equação por -3.

-3x + 2y - 3z + 18 =0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equacao plano tangente

Mensagempor Flames » Ter Mar 13, 2012 23:15

LuizAquino escreveu:
Flames escreveu:O que fiz foi:
achei a derivada parcial em ordem a x
\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{4}-3=0
dando a derivada
\frac{x}{2} no ponto (2,-3,2) =1


Ok.

Flames escreveu:achei a derivada parcial em ordem a y
\frac{2y}{9} no ponto (2,-3,2) =  \frac{-2}{3}


Ok.

Flames escreveu:\frac{z}{2} no ponto (2,-3,2) = 1


Ok.

Flames escreveu:Depois disto fui buscar o ponto (2,-3,2) e substitui em cada derivada parcial juntando no final à formula:
1\times(x-2)+ \frac{-2}{3}\times(y+3)+1\times(z-2)=0


Ok. Basta continuar a partir daí.

(x-2) - \dfrac{2}{3}(y+3) + (z-2)=0

x - \dfrac{2}{3}y + z - 2 - 2 - 2 =0

x - \dfrac{2}{3}y + z - 6 =0

Esta é uma resposta correta. Mas se você quiser obter a resposta apresentada no gabarito, então basta multiplicar ambos os membros da equação por -3.

-3x + 2y - 3z + 18 =0


Muito Obrigado algo tão simples eu achei que deveria aparecer directamente na operação... Mais uma vez obrigado pelo seu tempo disponibilizado :)
Flames
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 12, 2012 23:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D