• Anúncio Global
    Respostas
    Exibições
    Última mensagem

poligonos convexos

poligonos convexos

Mensagempor alfabeta » Qui Mar 08, 2012 20:00

ABCDEF... é um polígono convexo regular. Determine o número de lados do polígono, sabendo que o ângulo CÊF mede 144°.

Não sei montar a figura
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: poligonos convexos

Mensagempor LuizAquino » Qui Mar 08, 2012 21:01

alfabeta escreveu:ABCDEF... é um polígono convexo regular. Determine o número de lados do polígono, sabendo que o ângulo CÊF mede 144°.


alfabeta escreveu:Não sei montar a figura


Basta montar uma figura como a que segue abaixo.

figura.png
figura.png (5.23 KiB) Exibido 4117 vezes


Note que antes de A e depois de F nós colocamos segmentos tracejados para indicar que o polígono regular continua a partir dali.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: poligonos convexos

Mensagempor alfabeta » Qui Mar 08, 2012 22:40

Entendi a figura, muito obrigado. Mas continuo sem saber como encontrar o número de lados.
Sei a fórmula da soma dos ângulos internos de um polígono regular= 180(n-2).
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: poligonos convexos

Mensagempor LuizAquino » Qui Mar 08, 2012 23:46

alfabeta escreveu:Entendi a figura, muito obrigado. Mas continuo sem saber como encontrar o número de lados.
Sei a fórmula da soma dos ângulos internos de um polígono regular= 180(n-2).


Dicas

Na figura que indiquei acima, CDE é um triângulo isósceles, pois CD e DE são lados de um polígono regular.

Além disso, temos que C\hat{D}E = D\hat{E}F, pois C\hat{D}E e D\hat{E}F são ângulos internos de um polígono regular.

Com base nessas informações, você pode determinar quanto vale os ângulos internos desse polígono. A partir disso, fica fácil obter o número de lados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: poligonos convexos

Mensagempor alfabeta » Sex Mar 09, 2012 00:35

Perfeito! Valeu!
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.