• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Modular

Função Modular

Mensagempor Rafael16 » Seg Mar 05, 2012 16:35

Boa tarde pessoal!

Tenho uma dúvida na seguinte função, vamos lá:

y = |x² + 2x - 3|

De acordo com a definição de módulo, eu fiz o seguinte:

y = x² + 2x - 3 se x² + 2x - 3 ? 0 (I)
y = -x² - 2x + 3 se x² + 2x - 3 < 0 (II)

(I) x² + 2x - 3 ? 0
raízes: x' = 1 e x'' = -3

Para que a primeira (I) função seja ? 0, então x ? -3 ou x ? 1
Eu acho que até aqui tudo bem.

(II) -x² - 2x + 3 < 0
raízes: x' = 1 e x'' = -3

O que eu não entendi é o seguinte: para que essa função seja menor que 0, então x < -3 ou x > 1.
Mas o meu livro está que -3 < x < 1.

Gostaria que pudesse me explicar o porque disso, pois a função (I) tem concavidade para cima e (II) tem concavidade para baixo.

Valeu gente!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Função Modular

Mensagempor nietzsche » Seg Mar 05, 2012 17:04

Rafael16,
você pode pensar no problema da seguinte forma:
|x² + 2x - 3| = |x-1||x+3|
Agora você analisa os casos possíveis.

A função módulo f(x) = |x| é >=0, para todo x real.
Mas você disse: "para que essa função seja menor que 0, então x < -3 ou x > 1." Para x = 2, temos y<0. Isso contrária essa propriedade (definição) de que a função módulo tem valor maior ou igual a zero.

Tem exercícios e exemplos feitos passo a passo desse tipo que você procura no livro do Guidorizzi, volume 1.

Outra fonte que pode ajudar é:
http://en.wikipedia.org/wiki/Absolute_value
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Modular

Mensagempor Rafael16 » Seg Mar 05, 2012 17:09

nietzsche escreveu:Rafael16,
você pode pensar no problema da seguinte forma:
|x² + 2x - 3| = |x-1||x+3|
Agora você analisa os casos possíveis.

A função módulo f(x) = |x| é >=0, para todo x real.
Mas você disse: "para que essa função seja menor que 0, então x < -3 ou x > 1." Para x = 2, temos y<0. Isso contrária essa propriedade (definição) de que a função módulo tem valor maior ou igual a zero.

Tem exercícios e exemplos feitos passo a passo desse tipo que você procura no livro do Guidorizzi, volume 1.

Outra fonte que pode ajudar é:
http://en.wikipedia.org/wiki/Absolute_value



Obrigado nietzsche
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.