• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica

Progressão Geométrica

Mensagempor ViniRFB » Sex Mar 02, 2012 13:39

Amigos.

Preciso de um help nessa questão

57. (Analista Administrativo – ANEEL 2006/ESAF) Os números A,B e 10 formam,nessa ordem, uma progressão aritmética. Os números 1, A e B formam, nessa ordem,uma progressão geométrica. Com essas informações, pode-se afirmar que um possível valor para o produto das razões dessas progressões é igual a:

Gabarito - 12

Minha dúvida está na verdade na PG.

Na resolução dessa questão na PG está assim (1,A,B)

q= A/1 E q=B/A simplificando deu B= A²

QUERIA SABER COMO ISSO? SERIA APLICADO O MMC NA BASE? ALGUÉM PODERIA FAZER O PASSO A PASSO DESSA SIMPLIFICAÇÃO.

DESDE JÁ AGRADEÇO!

VINIRFB
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geométrica

Mensagempor ViniRFB » Sex Mar 02, 2012 13:44

Pelo que deu para entender foi multiplicado em x as igualdades?

A/1=B/A Multiplicando em x fica A² e B resultando B=A², mas poderia fazer isso por quê?
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geométrica

Mensagempor MarceloFantini » Sex Mar 02, 2012 19:00

Temos \frac{A}{1} = A = q = \frac{B}{A}. Logo, A = \frac{B}{A}. Multiplique os dois lados por A, e lembre que \frac{A}{A} = 1, daí A \cdot A = A^2 = B \cdot \frac{A}{A} = B \cdot 1 = B.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geométrica

Mensagempor ViniRFB » Sex Mar 02, 2012 19:16

Olá,

Não sei se entendi, mas acredito que ainda não, mas vamos lá...

A/1 = A correto? O resultado é A, pois toda letra dividade por um é a letra isso?

A = q é a razão da PG?

Do outro lado temos B/A. Essa parte eu não saquei eu acho. B/A é = B. A/A por que esse A/A novamente? Aí paira minha dúvida.

Grato

ViniRFB
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geométrica

Mensagempor DanielFerreira » Sex Mar 02, 2012 21:57

ViniRFB escreveu:Amigos.

Preciso de um help nessa questão

57. (Analista Administrativo – ANEEL 2006/ESAF) Os números A,B e 10 formam,nessa ordem, uma progressão aritmética. Os números 1, A e B formam, nessa ordem,uma progressão geométrica. Com essas informações, pode-se afirmar que um possível valor para o produto das razões dessas progressões é igual a:

Gabarito - 12

Minha dúvida está na verdade na PG.

Na resolução dessa questão na PG está assim (1,A,B)

q= A/1 E q=B/A simplificando deu B= A²

QUERIA SABER COMO ISSO? SERIA APLICADO O MMC NA BASE? ALGUÉM PODERIA FAZER O PASSO A PASSO DESSA SIMPLIFICAÇÃO.

DESDE JÁ AGRADEÇO!

VINIRFB

P.A:
a_1 = A
a_2 = B
a_3 = 10
r = ?

a_2 - a_1 = a_3 - a_2
2 . a_2 = a_1 + a_3
2B = A + 10
B = \frac{A + 10}{2}


P.G:
b_1 = 1
b_2 = A
b_3 = B
q = ?

\frac{b_2}{b_1} = \frac{b_3}{b_2} ======> \frac{A}{1} = \frac{B}{A} ======> A^2 = B


A^2 = \frac{A + 10}{2}

2A^2 - A - 10 = 0

2A^2 + 4A - 5A - 10 = 0

2A(A + 2) - 5(A + 2) = 0

(2A - 5)(A + 2) = 0

A = - 2 ou A = \frac{5}{2}

Quando A = - 2, B = 4
r = B - A
r = 4 - (- 2)
r = 6

q = \frac{A}{1}
q = A
q = - 2

Então,
r . q =
6 . (- 2) =
- 12
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Progressão Geométrica

Mensagempor MarceloFantini » Sex Mar 02, 2012 23:00

Sim, A é a razão da progressão geométrica. Assim, para manter a razão, devemos ter que \frac{B}{A} = A. Isto só acontece se B = A^2, para cancelar a divisão e sobrar A.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geométrica

Mensagempor ViniRFB » Sex Mar 02, 2012 23:37

Obrigado a todos pelas excelentes explicações.

ViniRFB
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.