por bira19 » Seg Fev 20, 2012 07:24
-4x+24x-y-32=0
O que completar o quadrado na variavel adequada ?
como encontrar equação canonica desta parabola ?
como identificar o vertice ?
-
bira19
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Out 03, 2011 20:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em eletronica
- Andamento: formado
por MarceloFantini » Seg Fev 20, 2012 08:49
Se a sua equação for

isto não é uma parábola. Por favor revise.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por bira19 » Seg Fev 20, 2012 09:35
MarceloFantini escreveu:Se a sua equação for

isto não é uma parábola. Por favor revise.
A equação estava errada, a correta é esta abaixo

-
bira19
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Out 03, 2011 20:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em eletronica
- Andamento: formado
por LuizAquino » Seg Fev 20, 2012 11:04
bira19 escreveu:A equação estava errada, a correta é esta abaixo

bira19 escreveu:O que completar o quadrado na variavel adequada?
como encontrar equação canonica desta parabola ?
como identificar o vertice?
Primeiro, coloque -4 em evidência:

Agora, complete quadrados:
![-4\left[(x-3)^2 - 9\right] - y - 32=0 -4\left[(x-3)^2 - 9\right] - y - 32=0](/latexrender/pictures/b6deefacb1188fccc2288f878411639e.png)
Tente continuar a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por bira19 » Seg Fev 20, 2012 15:36
Eu não entendi o que é completar os quadrados
-
bira19
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Out 03, 2011 20:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em eletronica
- Andamento: formado
por MarceloFantini » Ter Fev 21, 2012 12:09
Lembra-se da expressão

? Completar quadrados é quando você tem

e você quer escrever como

, daí lembrando que

teremos

.
No caso do exercício, temos

, usando o que acabei de dizer teremos
![-4(x^2 -6x +9 -9) = -4[(x-3)^2 -9] -4(x^2 -6x +9 -9) = -4[(x-3)^2 -9]](/latexrender/pictures/418a31a7b9704758c349a8b4e1c7d960.png)
.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Parábola]Determinar vértice de parábola (Urgente!)
por migvas99 » Seg Out 08, 2012 14:37
- 1 Respostas
- 2728 Exibições
- Última mensagem por young_jedi

Seg Out 08, 2012 17:09
Funções
-
- [Parábola] Encontrando o ponto na parábola
por Ana_Rodrigues » Ter Nov 22, 2011 20:44
- 1 Respostas
- 4884 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 21:38
Geometria Analítica
-
- Parábola
por flavio2010 » Sáb Jul 17, 2010 19:11
- 1 Respostas
- 1931 Exibições
- Última mensagem por Tom

Sáb Jul 17, 2010 22:20
Funções
-
- Parábola
por flavio2010 » Dom Jul 18, 2010 19:42
- 1 Respostas
- 1820 Exibições
- Última mensagem por Tom

Dom Jul 18, 2010 23:31
Funções
-
- Parábola
por flavio2010 » Sex Jul 23, 2010 19:16
- 1 Respostas
- 1927 Exibições
- Última mensagem por MarceloFantini

Sáb Jul 24, 2010 01:40
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.