• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Qui Fev 16, 2012 19:12

Classifique entre Verdadeira e Falsa. (Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo)
(c) Se {A}^{t}={A}^{-1} então det(A) = 1
Resolução:

Verdadeiro

No caso, o único exemplo seria a matriz Identidade
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Fev 16, 2012 21:10

Falso, podemos ter \det A = -1. Note que \det A \cdot \det A^t = \det A \cdot \det A = (\det A)^2 = 1, daí \det A = 1 ou \det A = -1. A matriz identidade não é o único exemplo, considere

A = \begin{bmatrix} \cos x & - \textrm{sen} \, x \\ \textrm{sen} \, x & \cos x \end{bmatrix}.

Então A^t = \begin{bmatrix} \cos x & \textrm{sen} \, x \\ - \textrm{sen} \, x & \cos x \end{bmatrix} e daí

A^t \cdot A = \begin{bmatrix} \cos x & \textrm{sen} \, x \\ - \textrm{sen} \, x & \cos x \end{bmatrix} \cdot \begin{bmatrix} \cos x & - \textrm{sen} \, x \\ \textrm{sen} \, x & \cos x \end{bmatrix} = I_{2 \times 2} = A \cdot A^t.

Note que A não é a identidade. Estas matrizes são especiais: é o grupo das matrizes ortogonais, ou seja, tal que A^t \cdot A = A \cdot A^t = I e como consequência |\det A| = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Qui Fev 16, 2012 22:34

Problema é pensar nesse exemplo
Isso é quase impossível
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Fev 16, 2012 22:38

De fato saber que este é um exemplo é complicado, mas o argumento do determinante independe disso e é o raciocínio esperado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Sáb Fev 25, 2012 20:25

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.