por Giu » Sáb Fev 11, 2012 15:20
Eu tenho um exercício resolvido aqui, mas não entendi um dos passos da resolução que fizeram, foi resolvido pelo monitor, também não sei se está certo, vou escrever o exercício todo e vê o que vc acha!
O enunciado pede para calcular as integrais indefinidas usando as substituições indicadas:

, onde x = -ln t
resolução feita: dx= -1/t dt
![\int_{}^{}(1/[e^(^-^l^n^t^)+1] \int_{}^{}(1/[e^(^-^l^n^t^)+1]](/latexrender/pictures/d2b4cccdccfad0728e1a5375485fa106.png)
... coloquei só essa parte q é onde não entendi.
A minha dúvida é:
![[e^(^-^l^n^t^)+1] = t^-^1+1 [e^(^-^l^n^t^)+1] = t^-^1+1](/latexrender/pictures/bd3b381cf8b447f0724112a5dc1c274d.png)
, que ficou assim :
![\int_{}^{}1/[(e^-^l^n^t) + 1] ... = \int_{}^{} 1/[(t^-^1) + 1]... \int_{}^{}1/[(e^-^l^n^t) + 1] ... = \int_{}^{} 1/[(t^-^1) + 1]...](/latexrender/pictures/08b9b8381442065e2825aec785771f65.png)
desculpe se não conseguir entender a minha dúvida, é q não conseguir colocar a resposta toda
Giu
-
Giu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Fev 08, 2012 15:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Quimica Licenciatura
- Andamento: cursando
por LuizAquino » Sáb Fev 11, 2012 18:06
Giu escreveu:O enunciado pede para calcular as integrais indefinidas usando as substituições indicadas:

, onde

Giu escreveu:A minha dúvida é:
![[e^{(-\ln t)} + 1] = t^{-1}+1 [e^{(-\ln t)} + 1] = t^{-1}+1](/latexrender/pictures/6db0a223a64c57dcafb3a8b9315eb274.png)
Revise duas propriedades dos logaritmos:
(i)

;
(ii)

.
Desse modo, temos que:
Observação: Lembre-se que

representa o logaritmo de
t na base
e . Ou seja, temos que

é o mesmo que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Trabalho utilizando a Lei de Hooke
por YaraTavares » Qui Out 19, 2017 00:47
- 0 Respostas
- 5529 Exibições
- Última mensagem por YaraTavares

Qui Out 19, 2017 00:47
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição / Integral por partes
por Carlos28 » Seg Out 19, 2015 12:25
- 1 Respostas
- 3043 Exibições
- Última mensagem por nakagumahissao

Seg Out 19, 2015 23:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição
por Aliocha Karamazov » Qui Fev 23, 2012 23:57
- 2 Respostas
- 2465 Exibições
- Última mensagem por MarceloFantini

Sex Fev 24, 2012 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral (substituição)
por kika_sanches » Sex Mar 23, 2012 14:42
- 4 Respostas
- 3138 Exibições
- Última mensagem por kika_sanches

Sex Mar 23, 2012 15:35
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Dom Nov 18, 2012 10:46
- 1 Respostas
- 1833 Exibições
- Última mensagem por young_jedi

Dom Nov 18, 2012 10:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.