• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipse

Elipse

Mensagempor carmem » Seg Jun 01, 2009 16:21

Por favor, me ajude nestas questões:

1- encontre a equação da elipse satisfazendo as seguintes condições;
a) (0,3) e (1,3) são os focos e o eixo menor é 3
b) os quato vértices são: (2,1), (6,1), (3,6) e (3,-4).

obrigada

carmem

Mensagens: 3
Data de registro: Ter Mai 12, 2009 23:25
Formação Escolar: SUPLETIVO
Área/Curso: matematica
Andamento: cursando
carmem
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 12, 2009 23:25
Formação Escolar: SUPLETIVO
Área/Curso: matematica
Andamento: cursando

Re: Elipse

Mensagempor Cleyson007 » Seg Jun 01, 2009 19:47

Boa noite Carmem.

Seja bem vinda ao Ajuda Matemática.

Não sei se você tem o gabarito, mas se tiver, é importante colocá-lo, a fim de facilitar a vida de quem se dispõe a ajudá-la.

Segue resolução da letra a:

a) Equação reduzida da elipse com centro fora da origem dos eixos coordenados.

\frac{({x-h})^{2}}{{a}^{2}}+\frac{({y-k})^{2}}{{b}^{2}}=1

Temos:

Centro da elipse \left(\frac{1}{2}, 3 \right)

Dois focos: (0,3) e (1,3)

Quanto ao eixo menor: 2b=3

Logo: b=\frac{3}{2}

Quanto a distância focal: 2c=1

Logo: c=\frac{1}{2}

Lembrando que: {a}^{2}={b}^{2}+{c}^{2}

Logo: {a}^{2}=\frac{10}{4}

Daí:

({x-\frac{1}{2}})^{2}/\frac{10}{4}+({y-3})^{2}/\frac{9}{4}=1

Portanto: 4({x-1/2})^{2}/10+4({y-3})^{2}/9=1

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Elipse

Mensagempor carmem » Seg Jun 01, 2009 22:08

Oi Cleyson,

obrigada pela resolução da letra. Não tenho o gabarito infelizmente.
Mas tinha tentado resolve-la e não obtive sucesso.
E a letra b)? Como eu encontro a equação com os dados das quatro vertices?
Carminha
carmem
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 12, 2009 23:25
Formação Escolar: SUPLETIVO
Área/Curso: matematica
Andamento: cursando

Re: Elipse

Mensagempor Cleyson007 » Sex Jun 05, 2009 12:54

Boa tarde Carmem!

Carmem, com relação a letra b, não estou conseguindo desenhar a elipse com os vértices que você descreveu.

Posso apresentar o meu modo de resolvê-lo?

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D