por joserd » Qua Jan 25, 2012 20:24
Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r.Me ajudem por favor preciso com urgencia
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por TheoFerraz » Qua Jan 25, 2012 21:03
façamos o seguinte... pense na sua piramide posicionada com a base no eixo Oxy e a ponta indo pelo eixo Oz... tudo bem até agora?
agora vamos integrar... quero integrar minúsculas fatias de volume para obter um volume final... Logo, quero:

Le-se então: "o volume total é a soma de infinitos pequenos volumes infinitesimais"
(OBS: como pode ver, eu sou estudante de física... os matemáticos provavelmente dirão que eu estou estuprando a matemática... =X mas só estou sendo pratico)
muito simples... agora vamos definir essas tais fatias infinitesimais de volume! quero que voce imagine que estou fatiando a piramide em farias paralelas ao eixo Oxy, tudo bem?
Vou fazer uma simplificação. Pense que, já que são fatias infinitesimalmente pequenas... a figura da fatia, que seria um "tronco de piramide" é, para todos os fins praticos, um paralelepipedo! (matemáticos, respirem fundo, esse é o jeito físico de resolver problemas!)
o que temos então... esse volume infinitesimal que eu estou chamando de dv pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!

esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
perceba que conforme eu vou 'fatiando', conforme cada fatia, esse 'r' muda!
se eu conseguir um jeito de escreve-lo mudando EM FUNÇÂO DE h, eu resolvo o problema!
e é possivel! voce pode, se pensar num corte vertical da piramide, ver que

sendo R e H as medidas dadas no enunciado.
Falta só uma coisa agora... os limites de integração!
eu estou cortando as fatias conforme a altura da piramide! minhas fatias deverão variar de 0 até H... compreende? Vou cortar ao longo da altura, desde o pto 0 até ter completado toda a reta...
(admito que essa explicação pode estar meio acoxambrada, me desculpe, mas fica realmente dificil da-la sem uma lousa =X)
por fim

Eis o 'jeito físico' de fazer a matemática...
por favor, desculpe-me de qualquer acoxambramento e qualquer possivel erro =X
Caso algum matemático queira complementar com a resolução mais formal....
obrigado.
Editado pela última vez por
TheoFerraz em Qui Jan 26, 2012 14:17, em um total de 4 vezes.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por TheoFerraz » Qua Jan 25, 2012 21:08
VIX! não tinha visto que sua area era a análise! O_O essa explicação deve ser praticamente inválida pra voce... esse jeito 'pratico' é absurdamente oposto ao jeito que o pessoal da análise costuma fazer =X descuuuulpe, mas espero que ao mínimo tenha conseguido ilustrar o problema...
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por joserd » Qua Jan 25, 2012 21:10
Não entendi o que tem nesse trecho
está faltando alguma coisa?
o que temos então... esse volume infinitesimal que eu estou chamando de pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!
esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por joserd » Qua Jan 25, 2012 21:12
Não Theo vc ajudou bastante estou quase lá com sua ajuda agradeço a atenção
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por TheoFerraz » Qua Jan 25, 2012 21:17
A sim, concertei lá. "esse volume infinitesimal que estou chamando de dv..."
eu tinha usado o Latex para escrever 'dv', pode ter ocorrido algum erro.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por LuizAquino » Qua Jan 25, 2012 22:20
joserd escreveu:Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r. Me ajudem por favor preciso com urgencia
A figura abaixo ilustra o exercício.

- figura.png (8.32 KiB) Exibido 7287 vezes
Primeiro, calcule a área do hexágono menor em função da posição
x.
Para isso, comece determinando o valor de
r.
Utilizando semelhança de triângulos, você deve obter que:

Sendo assim, a área A do hexágono menor será dada por:
![A = \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2 A = \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2](/latexrender/pictures/640a469a8e976862210315cb960e29f7.png)
Enxergando a área A como uma função de x, temos que:

![V = \int_0^H \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2\, dx V = \int_0^H \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2\, dx](/latexrender/pictures/21d8940d57a72d9a2a206c83996d56d5.png)

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por joserd » Qua Jan 25, 2012 22:33
Obrigado. Agora ficou mais claro.
Por favor se puderem me ajudar no outro que enviei agradeço
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- >>>>>>Volume da Pirâmide de Base Hexagonal<<<<<
por futuromilitar » Sáb Mai 21, 2016 17:29
- 1 Respostas
- 6152 Exibições
- Última mensagem por futuromilitar

Qui Mai 26, 2016 22:00
Geometria Espacial
-
- Determine a área total e o volume do prisma Hexagonal
por andersontricordiano » Qui Nov 10, 2011 15:55
- 1 Respostas
- 3323 Exibições
- Última mensagem por MarceloFantini

Qui Nov 10, 2011 19:54
Geometria
-
- Calcular o volume de uma pirâmide
por -civil- » Qua Jun 15, 2011 21:05
- 2 Respostas
- 2444 Exibições
- Última mensagem por -civil-

Sáb Jun 18, 2011 12:13
Geometria Analítica
-
- Volume do tronco da pirâmide
por erikamurizinepires12 » Qui Fev 09, 2017 16:02
- 1 Respostas
- 8101 Exibições
- Última mensagem por 314159265

Seg Fev 13, 2017 02:31
Geometria Espacial
-
- Geometria Analitica Volume da piramide
por Diego Silva » Sex Ago 02, 2013 23:39
- 1 Respostas
- 4070 Exibições
- Última mensagem por mecfael

Dom Ago 18, 2013 22:58
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.