por lipelfnc » Qua Jan 25, 2012 20:16
Primeiros dois exercícios, "de calcular mesmo", do guidorizzi que empaquei. De resto, só os de demonstração que estão me pegando mesmo.

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.

Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.
E obrigado pelas dicas quanto aos exercícios de demonstração.
-
lipelfnc
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jan 24, 2012 14:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng/Programação
- Andamento: formado
por lipelfnc » Qua Jan 25, 2012 22:23
Nossa, obrigado.
Nunca que eu iria pensar em dividir por x na primeira, e fazer aquela substituição na segunda.
Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?
Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
-
lipelfnc
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jan 24, 2012 14:10
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng/Programação
- Andamento: formado
por LuizAquino » Qua Jan 25, 2012 22:46
lipelfnc escreveu:Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?
Sim, com a experiência essas simplificações se tornam naturais.
lipelfnc escreveu:Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
Para um aluno do curso de Engenharia, eu recomendo a referência abaixo.
- Stewart, James. Cálculo. Vol. I. 6ª Edição. São Paulo: Thomson Pioneira, 2009.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade em exercícios de demonstração
por lipelfnc » Ter Jan 24, 2012 14:34
- 3 Respostas
- 2865 Exibições
- Última mensagem por fraol

Ter Jan 24, 2012 19:15
Cálculo: Limites, Derivadas e Integrais
-
- [Elipse, hipérbole, parábola] Dificuldade em exercícios!
por geo_nascimento » Dom Out 23, 2011 15:47
- 1 Respostas
- 4939 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 16:33
Geometria Analítica
-
- Demonstração de exercícios
por andrecezar » Qui Mai 18, 2017 00:06
- 0 Respostas
- 2198 Exibições
- Última mensagem por andrecezar

Qui Mai 18, 2017 00:06
Conjuntos
-
- [Álgebra I, exercicios] Exercicios que estão sem resolução.
por vitorullmann » Ter Mar 05, 2013 21:26
- 0 Respostas
- 3299 Exibições
- Última mensagem por vitorullmann

Ter Mar 05, 2013 21:26
Álgebra Elementar
-
- Dificuldade
por Alison Bissoli » Qui Dez 03, 2009 13:40
- 6 Respostas
- 3827 Exibições
- Última mensagem por Elcioschin

Dom Dez 06, 2009 13:54
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.