• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade em exercícios de demonstração

Dificuldade em exercícios de demonstração

Mensagempor lipelfnc » Qua Jan 25, 2012 20:16

Primeiros dois exercícios, "de calcular mesmo", do guidorizzi que empaquei. De resto, só os de demonstração que estão me pegando mesmo.

\lim_{x \rightarrow 0}\frac{x - tgx}{x + tgx}

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.

\lim_{x \rightarrow 1}\frac{sen (x\pi)}{x - 1}
Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.


E obrigado pelas dicas quanto aos exercícios de demonstração.
lipelfnc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 24, 2012 14:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng/Programação
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor LuizAquino » Qua Jan 25, 2012 20:41

lipelfnc escreveu:\lim_{x \to 0}\frac{x - \textrm{tg}\,x}{x + \textrm{tg}\,x}

Tentei substituir tgx = senx/cosx, mas travei quando corta os cosx
No gabarito diz que o resultado é 0.


\lim_{x \to 0}\frac{x - \textrm{tg}\,x}{x + \textrm{tg}\,x} = \lim_{x \to 0} \frac{x - \frac{\textrm{sen}\,x}{\cos x}}{x + \frac{\textrm{sen}\,x}{\cos x}}

= \lim_{x \to 0} \frac{x\cos x - \textrm{sen}\,x}{x\cos x + \textrm{sen}\,x}

= \lim_{x \to 0} \frac{(x\cos x - \textrm{sen}\,x) : x}{(x\cos x + \textrm{sen}\,x) : x}

= \lim_{x \to 0} \frac{\cos x - \frac{\textrm{sen}\,x}{x}}{\cos x + \frac{\textrm{sen}\,x}{x}}

= \frac{1 - 1}{1 + 1} = 0


lipelfnc escreveu:\lim_{x \to 1}\frac{\textrm{sen}\,(x\pi)}{x - 1}
Nesse tentei de vários jeitos, inclusive com a propriedade do limite fundamental.


Fazendo a substituição u = x - 1, quando x\to 1 temos que u\to 0 .

Nesse caso, temos que:

\lim_{x \to 1}\frac{\textrm{sen}\,(x\pi)}{x - 1} = \lim_{u \to 0}\frac{\textrm{sen}\,[(u+1)\pi]}{u}

= \lim_{u \to 0}\frac{\textrm{sen}\,(u\pi)\cos \pi + \textrm{sen}\,\pi\cos (u\pi)}{u}

= \lim_{u \to 0}\frac{-\textrm{sen}\,(u\pi) }{u}

= \lim_{u \to 0}\frac{-\textrm{sen}\,(u\pi) }{u} \cdot \frac{\pi}{\pi}

= \lim_{u \to 0}(-\pi)\frac{\textrm{sen}\,(u\pi) }{u\pi}

= -\pi

Observação

Tente justificar que:

\lim_{u \to 0} \frac{\textrm{sen}\,(u\pi) }{u\pi} = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor lipelfnc » Qua Jan 25, 2012 22:23

Nossa, obrigado.
Nunca que eu iria pensar em dividir por x na primeira, e fazer aquela substituição na segunda.

Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?

Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?
lipelfnc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 24, 2012 14:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng/Programação
Andamento: formado

Re: Dificuldade em exercícios de demonstração

Mensagempor LuizAquino » Qua Jan 25, 2012 22:46

lipelfnc escreveu:Assim, qual é o segredo para ter essas sacadas? Só a experiência mesmo?


Sim, com a experiência essas simplificações se tornam naturais.

lipelfnc escreveu:Alguns colegas recomendaram que eu desse uma estudada pelo Apostol. Sei que ele é bem puxado, mas vcs recomendariam para alguem que estará cursando Engenharia?


Para um aluno do curso de Engenharia, eu recomendo a referência abaixo.

  • Stewart, James. Cálculo. Vol. I. 6ª Edição. São Paulo: Thomson Pioneira, 2009.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}