• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equacao

equacao

Mensagempor clabonfim » Seg Jan 16, 2012 01:22

Diz-se que um número inteiro positivo x é um número perfeito, quando é a soma de todos
os seus divisores positivos, exceto ele próprio. Por exemplo, 28 é um número perfeito, pois
28 = 1 + 2 + 4 + 7 + 14. A última proposição do nono livro dos Elementos de Euclides prova
que se n é um inteiro positivo, tal que 2^n ?1 é um número primo, então 2^(n–1)(2^n ?1) é um número
perfeito. Euler provou que todo número perfeito par tem essa forma, mas ainda não são
conhecidos números perfeitos ímpares.
O menor elemento do conjunto P = {n ? / 2^(n?1)(2^n ?1) > 1128}, para o qual 2n–1(2n?1) é um número
perfeito, é
A) 5 C) 7 E) 9
B) 6 D) 8
clabonfim
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Ago 08, 2011 04:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 21:37

Não entendi, ao certo, as expressões contidas no trecho:

O menor elemento do conjunto P = {n ? / 2^(n?1)(2^n ?1) > 1128}, para o qual 2n–1(2n?1) é um número
perfeito, é


Você tem como melhorar o texto usando Latex, quem sabe usando o Editor de Fórmulas?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 22:59

Revendo um pouco o assunto números perfeitos, acredito que a expressão seja:

O menor elemento do conjunto P = \{ n \in N / 2^{n-1}(2^{n}-1) > 1128 \}, para o qual 2^{n-1}(2^{n}-1) é um número perfeito, é


Se assim o for, usando a informação dada: "se (2^{n}-1) é um número primo, então 2^{n-1}(2^{n}-1) é um número perfeito" e o fato de que "se (2^{n}-1) é um número primo, então n também é primo", concluí-se que n \in \{ 2, 3, 5, 7, 11, 13, ... \}.

Daqui em diante, ou tentamos isolar o n na expressão 2^{n-1}(2^{n}-1) > 1128 via algum recurso algébrico ( tentei mas não cheguei a bom termo ), ou testamos alguns números primos posto que 1128 é um número relativamente pequeno e não será difícil encontrar o tal n.

Outra alternativa, que não é o caso em um teste ou prova, mas pode ser usado em caso de pesquisa é recorrer a uma tabela de números perfeitos conhecidos, ou mesmo aplicar a fórmula em uma planilha de cálculo.


Se algum outro colega tiver alguma outra forma, manda pra cá.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: equacao

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 23:08

fraol escreveu:Se algum outro colega tiver alguma outra forma, manda pra cá.

Boa Noite.
Ele postou a mesma questão aqui e no fórum pir2.
Ela já foi respondida e a resposta é n = 7
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 23:31

Obrigado Arkanus!
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: