• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual é o numero de ligações distintas entre X e Z

Qual é o numero de ligações distintas entre X e Z

Mensagempor andersontricordiano » Ter Jan 10, 2012 01:41

Observe o diagrama.
Qual é o numero de ligações distintas entre X e Z


ligações.png
ligações.png (1.65 KiB) Exibido 5540 vezes
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Qual é o numero de ligações distintas entre X e Z

Mensagempor ant_dii » Ter Jan 10, 2012 02:44

Bom, o método que sei é trabalhoso, mas no momento não to conseguindo lembrar de outro.

Caso esteja perguntando em relação as setas:
Considerando que todas as setas apontam na direção de X, vamos contar os casos:
de Y pra Z há 2 modos
de R pra Z há 1 modo direto
3 \cdot 2 = 6 modos indo por Y
de S pra Z há 2 modos diretos
2 \cdot 2 = 4 modos indo por Y
de X pra Z há 3 modos indo por R direto
3 \cdot 6 = 18 modos indo por R e Y
há 2 modos indo por Y
há 6 modos indo por S
3 \cdot 4 = 12 modos indo por S e Y

Portanto, há 3+18+2+6+12=41 modos diferentes.

Caso esteja perguntando em relação as casas, então podemos ter as ligações
XRZ, XRYZ, XYZ, XSYZ e XSZ, ou seja, 5 ligações diferentes.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.