• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade com rasteira

Probabilidade com rasteira

Mensagempor joaofonseca » Sáb Jan 07, 2012 11:22

Sejam A,B e C três caixas iguais.Em cada uma foram colocadas 10 bolas, umas verdes outras amarelas.
A distribuição é a seguinte:

Caixa A:
Bolas amarelas: 5
Bolas verdes: 5

Caixa B:
Bolas amarelas: 2
Bolas verdes: 8

Caixa C:
Bolas amarelas: 6
Bolas verdes: 4

Escolhendo aleatoriamente uma caixa, qual é a probabilidade de tirar uma bola verde?

Se fosse uma probabilidade condicional, do tipo, qual a probabilidade de tirar bola verde sabendo que se tirou da caixa A, seria facil.Pois os casos favoraveis limitavam-se às bolas verdes que estão na caixa A.
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.Mas isto é a mesma coisa se as 30 bolas estivessem numa unica caixa.Logo:

P(V)=\frac{5+8+4}{30}=\frac{17}{30}

Será assim?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Probabilidade com rasteira

Mensagempor Arkanus Darondra » Sáb Jan 07, 2012 12:35

Olá joaofonseca,
Embora você tenha chegado à resposta correta, o método que você utilizou não é o "mais correto"
Você chegou à resposta correta porque o número de bolas em cada caixa é o mesmo

Para este tipo de exercício você deve calcular a probabilidade do que se quer, separadamente, e somá-las P(V)
Depois disso, calcular a probabilidade de se escolher uma caixa ao acaso P(C)
Após isso, basta fazer P(V) . P(C) , ou seja, \frac {17}{10} . \frac {1}{3}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Probabilidade com rasteira

Mensagempor fraol » Sáb Jan 07, 2012 17:59

Concordo com o raciocínio do joaofonseca. Explicitamente teríamos: \frac{1}{3}.\frac{5}{10} + \frac{1}{3}.\frac{8}{10} + \frac{1}{3}.\frac{4}{10} , que é basicamente o que foi dito em
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.


Arkanus, você colocou probabilidade de \frac{17}{10} , mas probabilidade, por definição é um número entre 0 e 1.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Probabilidade com rasteira

Mensagempor Arkanus Darondra » Sáb Jan 07, 2012 18:54

fraol escreveu:Concordo com o raciocínio do joaofonseca. Explicitamente teríamos: \frac{1}{3}.\frac{5}{10} + \frac{1}{3}.\frac{8}{10} + \frac{1}{3}.\frac{4}{10} , que é basicamente o que foi dito em
Se eu fizer 3 probabilidades condicionadas, cada uma relativa a tirar uma bola de cada uma das caixas, então basta somar as 3 probabilidades condicionadas.


Concordo, porém ele também afirma:
"(...)isto é a mesma coisa se as 30 bolas estivessem numa unica caixa".
fraol escreveu:Arkanus, você colocou probabilidade de \frac{17}{10} , mas probabilidade, por definição é um número entre 0 e 1.

Concordo, o meu erro foi chamar a soma das probabilidades de P(V), foi um descuido.
Supondo somar 0,8 e 0,7, por exemplo, que são números entre 0 e 1, teremos um número maior que um.

Obrigado pela observação. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.