• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformaçao Linear pela matriz em relaçao a uma base

Transformaçao Linear pela matriz em relaçao a uma base

Mensagempor Mysuno » Sex Jan 06, 2012 15:28

Boa tarde, e o meu primeiro post neste forum.

Tenho uma duvida nesta escolha multipla.
Tenho a certeza que a primeira opçao nao e, visto serem linearmentes independentes.

No entanto as outras opçoes, nao consigo percebe-las.

Se alguem me puder ajudar agradecia.
Anexos
Capturar1.PNG
Escola Multipla
Mysuno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jan 06, 2012 15:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Transformaçao Linear pela matriz em relaçao a uma base

Mensagempor MarceloFantini » Sex Jan 06, 2012 18:19

Mysuno, por favor evite postar imagens, procure digitar o enunciado da questão e das opções. Sobre o problema, você sabe o que significa nulidade, complemento ortogonal de um subespaço e a relação da nulidade com existência de transformação inversa?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Transformaçao Linear pela matriz em relaçao a uma base

Mensagempor Mysuno » Sex Jan 06, 2012 19:27

Peço desculpa, nao sabia que nao se podia por imagens.

Nao, nao sei nada disso. Esta materia ainda e recente mas a minha professora e mesmo para nos tramar. Tenho de entregar isso ainda hoje.
Mysuno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jan 06, 2012 15:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Transformaçao Linear pela matriz em relaçao a uma base

Mensagempor MarceloFantini » Sex Jan 06, 2012 20:06

Vou tentar explicar de maneira rápida.

Dados dois espaços vetoriais e uma transformação linear, você pode definir o núcleo ou kernel da transformação linear como todos os vetores tais que a transformação se anula, ou seja, dada T: V \to W o núcleo é o conjunto dos vetores que anulam a transformação: \{ v \in V; \; T(v) = 0\}.

Os vetores que não anulam a transformação vão para o conjunto imagem. Existe um teorema que diz que \dim V = \dim ker \, T + \dim Im \, T.

Chamamos de nulidade a dimensão do núcleo da transformação, ou seja, \text{nulidade } = \dim ker \, T. Nulidade positiva significa que a dimensão é maior que zero. Convencionamos que quando o único vetor no núcleo é o vetor nulo então sua dimensão é zero.

Existe um outro teorema que diz que uma transformação é invertível se e somente se a nulidade for zero, ou seja, o único vetor no núcleo é o vetor nulo.

De maneira sintética, dado um subespaço, dizemos que o seu complemento ortogonal é composto por todos os vetores que são ortogonais entre si, ou seja, usando o produto interno do espaço nós temos que W^{\perp} = \{ v \in V; \; \langle v,w \rangle = 0, \, \forall w \in W\}, onde W é um subespaço de V e \langle \; , \, \rangle é o produto interno do espaço.

Usando este pedaço de teoria, veja se consegue resolver. Procure um pouco mais sobre complementos ortogonais, estou sem tempo pra poder explicar tudo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D