por thiagocsouza » Ter Jan 03, 2012 22:41
Observando a idade de 3 amigas, um matemático verificou que a idade de Ana somada ao dobro da idade de Brenda é igual a 69, a diferença entre as idades de Cássia e de Brenda é de 6 anos. e que a soma das idades das 3 amigas dá 75. Cássia tem:
a) 31
b) 29
c) 27
d) 25
Porque a Resposta é 25 ?
-
thiagocsouza
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Jan 03, 2012 22:37
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Neperiano » Qua Jan 04, 2012 22:39
Ola
Ana = x
Brenda = y
Cássia = Z
x + 2y = 69
z - y = 6
x + y + z = 75
Só resolver o sistema e descobrir z
Qualquer duvida
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Arkanus Darondra » Qua Jan 04, 2012 23:43
thiagocsouza escreveu:Observando a idade de 3 amigas, um matemático verificou que a idade de Ana somada ao dobro da idade de Brenda é igual a 69, a diferença entre as idades de Cássia e de Brenda é de 6 anos. e que a soma das idades das 3 amigas dá 75. Cássia tem:
a) 31
b) 29
c) 27
d) 25
Considerando o sistema

Onde Ana = A, Brenda = B e Cássia = C
Temos um sistema onde todos os valores de C das alternativa são possíveis, desde correspondam às equações:
B = C - 6
A = 81 - 2C
É possível chegar a estas equações por meio do escalonamento do sistema:


Como a última linha é nula, temos um SPI
Adotando

, chegamos às equações.
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por thiagocsouza » Qui Jan 05, 2012 09:26
Não me ajudaram em nada, essa questão caiu no vestibular do SENAI. Já afirmei que a resposta é 25, segundo o gabarito divulgado. Agora não consegui achar esse resultado.
-
thiagocsouza
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Jan 03, 2012 22:37
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Neperiano » Qui Jan 05, 2012 14:23
Ola
Nem precisar resolver por escalonamento, se você isolar x na primeira e z na segunda, é só substituir na 3, irá descobrir y, e a partir dai vai desobrindo as outras.
E tiagocsouza o objetivo do forum não é resolver a questão para você, é dar os caminhos para você chegar até lá, tente você mesmo fazer por um dos jeitos supracitados, mostre seu passo a passo que corrijiremos se algo estiver errado.
Tente fazer
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Arkanus Darondra » Qui Jan 05, 2012 15:37
Dessa forma, provavelmente, falta algum dado da questão
Visto que, ao substituir-se

na última equação, não encontraremos o valor de

.
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Neperiano » Qui Jan 05, 2012 15:42
Ola
Arkanus Darondra escreveu:thiagocsouza escreveu:Observando a idade de 3 amigas, um matemático verificou que a idade de Ana somada ao dobro da idade de Brenda é igual a 69, a diferença entre as idades de Cássia e de Brenda é de 6 anos. e que a soma das idades das 3 amigas dá 75. Cássia tem:
a) 31
b) 29
c) 27
d) 25
Considerando o sistema

Onde Ana = A, Brenda = B e Cássia = C
Temos um sistema onde todos os valores de C das alternativa são possíveis, desde correspondam às equações:
B = C - 6
A = 81 - 2C
É possível chegar a estas equações por meio do escalonamento do sistema:


Como a última linha é nula, temos um SPI
Adotando

, chegamos às equações.
A = 69 - 2B
C = 6 + B
Logo
69 - 2B + B + 6 + B = 75
Tem razão os b se anulam, só dar para resolver por escalonamento mesmo, você está correto
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por DanielFerreira » Sáb Jan 07, 2012 21:55
thiagocsouza escreveu:Observando a idade de 3 amigas, um matemático verificou que a idade de Ana somada ao dobro da idade de Brenda é igual a 69, a diferença entre as idades de Cássia e de Brenda é de 6 anos. e que a soma das idades das 3 amigas dá 75. Cássia tem:
a) 31
b) 29
c) 27
d) 25
Porque a Resposta é 25 ?
A + 2B = 69
C - B = 6
A + B + C = 75
---------------------
2A + 2B + 2C = 150
A + B + C = 75
Temos 3 variáveis e 2 equações, pode-se concluir que o sistema, assim como já foi dito, é INDETERMINADO. Ou seja, Thiago, possui mais que uma solução!
Nesse caso, terá que resolver pelas alternativas!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Arkanus Darondra » Sáb Jan 07, 2012 22:12
Falta algum dado na questão, visto que qualquer valor da alternativa satisfaz o sistema.
Para C = 31, temos que B = 25 e A = 19
Para C = 29, temos que B = 23 e A = 23
Para C = 27, temos que B = 21 e A = 27
Para C = 25, temos que B = 19 e A = 31
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema Matemático
por honorio » Dom Set 06, 2009 20:06
- 10 Respostas
- 7421 Exibições
- Última mensagem por honorio

Dom Set 20, 2009 17:25
Funções
-
- Problema matematico
por girotto » Seg Jun 11, 2012 16:34
- 1 Respostas
- 1629 Exibições
- Última mensagem por Russman

Seg Jun 11, 2012 18:50
Sistemas de Equações
-
- problema matemático de vendas
por vb_evan » Sáb Mar 06, 2010 15:20
- 2 Respostas
- 2942 Exibições
- Última mensagem por vb_evan

Dom Mar 07, 2010 09:16
Dúvidas Pendentes (aguardando novos colaboradores)
-
- duvida em um problema matematico
por diogo_poa » Ter Mar 23, 2010 23:15
- 0 Respostas
- 1308 Exibições
- Última mensagem por diogo_poa

Ter Mar 23, 2010 23:15
Sistemas de Equações
-
- Porcentagem - Problema matemático
por Sheyla » Qua Mar 27, 2013 14:21
- 3 Respostas
- 3358 Exibições
- Última mensagem por Sheyla

Qua Mar 27, 2013 21:42
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.