• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do quadrado

Área do quadrado

Mensagempor Andreza » Ter Jan 03, 2012 10:43

Sobre um quadrado ABCD, de lado de 4cm, determinamos os pontos M,N,P e Q de tal forma que AM=BN=CP=DQ=x. Qual é a área de MNPQ, em centímetros quadrados e em função de x?


Calculando a área separadamente do quadrando cincunscrito tenho 16cm².
Aplicando teorema de pitágoras tenho L= 4+x
Como faço pra encontrar a coesão das ideias e juntar para montar a resposta?

Dede já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Área do quadrado

Mensagempor Andreza » Ter Jan 03, 2012 11:18

Estou tentando resolver ele aqui e encontrei \left(4+x \right)² = x² + 8x+16.
Porém nao é esta a resposta correta q está no gabarito da FCC.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Área do quadrado

Mensagempor fraol » Ter Jan 03, 2012 13:54

Oi Andreza,

Veja se este desenvolvimento confere:

Chamando de L o lado do paralelogramo formado conforme o enunciado então a área de MNPQ será L^2.

L^2 sai por Pitágoras ao analisarmos o triângulo, por exemplo, AMQ que terá hipotenusa L e catetos x e 4 -x, então:

L^2 = x^2 + (4-x)^2 \iff L^2 = x^2 + 16 -8x + x^2 e, portanto:

L^2 = 2x^2 -8x + 16 .

Ok?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: