• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Limites em R2

[Limites] Limites em R2

Mensagempor NF17 » Qua Dez 28, 2011 16:27

Olá, vai ser o meu primeiro tópico neste fórum.

Tenho andado a estudar e surgiu esta dúvida. Como não estava a encontrar solução satisfatória em lado nenhum para o meu problema, pensei que vocês me pudessem ajudar.

O enunciado é o seguinte:

Mostrar, a partir da definição, que

\lim_{(x,y)\rightarrow(0,0)} (x^2+y^2) sin\left(\frac{1}{\sqrt[]{x^2+y^2}}\right) = 0


A minha resolução começou por ser esta, no entanto estou bloqueado a meio do processo e não sei como passar daí.

\forall\:\delta>0\:\exists\varepsilon>0:0<\left|\right|(x,y)\:-\:(0,0)\left| \right|<\varepsilon\Rightarrow\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right)\right|<\delta

\forall\:\delta>0\:\exists\varepsilon>0:0<\sqrt[]{x^2+y^2}<\varepsilon\Rightarrow\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right)\right|<\delta

Aqui fiquei bloqueado porque não sei como resolver tendo um seno na função.

\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right) \right|=(x^2+y^2)\left|sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right) \right|
NF17
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 28, 2011 15:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] Limites em R2

Mensagempor Renato_RJ » Qua Dez 28, 2011 23:52

Boa noite !!

Repare que a função seno é uma função limitada (tudo bem que o argumento tenderá ao infinito quando o par x,y tender a zero, mas mesmo assim, a imagem da função é limitada no intervalo [-1,1] ) enquanto que a função x^2+y^2 tende a zero no limite, logo a função total vai tender a zero quando o par x,y tender a zero...

Acho que é isso..

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: [Limites] Limites em R2

Mensagempor fraol » Qui Dez 29, 2011 21:14

Olá NF17 e Renato_RJ,

Aqui vai um esboço de uma prova formal.

Provar o limite dado é afirmar que: Dado \epsilon > 0, existe \delta > 0 tal que se \left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| < \epsilon então || (x,y) || < \delta.

Sabemos que || (x,y) || = \sqrt(x^2+y^2). Então vamos lá:

Seja \epsilon > 0; tomemos \delta = {-------} ( a preencher).

\left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right|

= \left| \left( x^2 + y^2 \right) \right| \left| sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right|

Como 0 <= \left| sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| <= 1, então devemos ter

= \left| \left( x^2 + y^2 \right) \right| < \epsilon \iff \left( \sqrt(x^2 + y^2 \right) < \sqrt(\epsilon).

Assim podemos preencher a lacuna acima com \delta = \sqrt(\epsilon) e concluímos que:

Seja \epsilon > 0; tomemos \delta = \sqrt(\epsilon) então

\left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| < \epsilon sempre que 0 < || (x,y) || = \sqrt(x^2+y^2) < \delta ou seja:

lim_{(x,y)->(0,0)} \left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| = 0 .

E então o que vocês acham? Críticas, sugestões ...

Abç,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites] Limites em R2

Mensagempor Renato_RJ » Qui Dez 29, 2011 22:53

Gostei, me parece correto... Eu parti logo para o Teorema do Confronto, acho mais tranquilo de fazer esse tipo de exercício...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?