• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema Simples

Problema Simples

Mensagempor sullivan » Ter Dez 27, 2011 12:14

Galera confesso que o problema é simples, mas vou falar a verdade eu não consegui nem montar o sistema dele por favor alguem me da uma direção para eu fazer ele..

A soma dos valores absolutos de um número de dois algarismos é 13. Trocando-se a ordem desses algarismos, obtém-se um número que tem 27 unidades a mais que o primeiro. Qual é esse número?
sullivan
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 23, 2011 10:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema Simples

Mensagempor fraol » Ter Dez 27, 2011 13:54

Olá Sullivan,

Tenho uma sugestão:

Sejam a e b os algarismos, assim os dois números são ab e ba e a+b = 13 e ba - ab = 27.

Obs: ab = 10.a + b e ba = 10.b + a.

Acho que dá pra resolver assim, o que você acha?

Abç,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Problema Simples

Mensagempor sullivan » Ter Dez 27, 2011 14:05

por que o número 10 multiplicando a e b?
sullivan
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 23, 2011 10:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema Simples

Mensagempor fraol » Ter Dez 27, 2011 14:33

Oi,

Por exemplo o número 38:

38 = 3 . 10 + 8.

Ok?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Problema Simples

Mensagempor sullivan » Ter Dez 27, 2011 14:44

ok vou tentar fazer só um minuto.. =)
sullivan
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 23, 2011 10:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema Simples

Mensagempor sullivan » Ter Dez 27, 2011 15:00

criei o seguinte sistema

a+b=13
ba - ab=27

substituindo :: 10.b+a - 10.a+b=27
onde b = 13-a
então ficou
10.(13-a) + a - 10.a + 13 -a = 27
calculando.. a = 58

porem b=-45

não entendi como achar o b já que deu negativo deve ter algo errado =/
sullivan
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 23, 2011 10:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema Simples

Mensagempor fraol » Ter Dez 27, 2011 15:15

10b + a - ( 10a + b ) = 27 ( cuidado com o sinal aqui )

10b + a - 10a - b = 27

9b + b + a - 9a - a - b = 27

9b + 13 - 9a - (a + b) = 27

9(b - a) = 27

b - a = 3

13 - a - a = 3

-2a = -10

a = 5 e b = 8.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Problema Simples

Mensagempor sullivan » Ter Dez 27, 2011 15:26

entendi muito obrigado pela dica

acho que hoje nao estou legal rs com sua primeira dica eu deveria ter achado a resposta sozinho, na próxima eu consigo =)
sullivan
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Dez 23, 2011 10:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema Simples

Mensagempor fraol » Ter Dez 27, 2011 15:28

Valeu,
Eu tb vivo errando nos sinais e nas continhas, faz parte ...
Abç.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?