• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada meio dificil duvidas

derivada meio dificil duvidas

Mensagempor giboia90 » Sex Dez 23, 2011 23:20

oi
Anexos
imagem33.JPG
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: derivada meio dificil duvidas

Mensagempor Renato_RJ » Sex Dez 23, 2011 23:48

Boa noite !!

O log f vem do fato do cara que resolveu a conta ter feito a integral do lado esquerdo da igualdade, em 7, em relação a f e do lado direito em relação a x, veja:

\int \frac{df}{f} = \int 2dx \Rightarrow \ln |f| = 2x

Tranquilo ?
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: derivada meio dificil duvidas

Mensagempor giboia90 » Dom Dez 25, 2011 15:05

Renato_RJ escreveu:Boa noite !!

O log f vem do fato do cara que resolveu a conta ter feito a integral do lado esquerdo da igualdade, em 7, em relação a f e do lado direito em relação a x, veja:

\int \frac{df}{f} = \int 2dx \Rightarrow \ln |f| = 2x

Tranquilo ?

tem como refaze -la bem mais facil e a detalhação da integral. eu agradeceria muito.
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: derivada meio dificil duvidas

Mensagempor Renato_RJ » Qua Dez 28, 2011 23:54

Essa integral é básica, pois a derivada de ln (x) é \frac{1}{x} e eu não lembro a demonstração dela.. rssss.....

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: derivada meio dificil duvidas

Mensagempor MarceloFantini » Qui Dez 29, 2011 12:37

Use integração por partes. Além disso, por favor não poste imagens e sim digite a questão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: derivada meio dificil duvidas

Mensagempor giboia90 » Dom Fev 19, 2012 01:41

poderia resolve- la de mode detalhada. e como o d multiplica o log de F. e onde sai esse c.
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: derivada meio dificil duvidas

Mensagempor LuizAquino » Dom Fev 19, 2012 08:45

giboia90 escreveu:poderia resolve- la de mode detalhada.


A solução já está detalhada! Todos os passos foram exibidos.

giboia90 escreveu:e como o d multiplica o log de F. e onde sai esse c.


No passo 1) começamos com a expressão para f^\prime(x) , sendo que após todas as simplificações nós obtemos no final do passo 5) que essa expressão é equivalente a 2f(x) .

Conclusão:

f^\prime(x) = 2f(x)

Podemos reescrever essa conclusão no seguinte formato:

\frac{f^\prime(x)}{f(x)} - 2 = 0

Agora note que o primeiro membro dessa equação é o resultado da derivada:

\left[\ln f(x) - 2x\right]^\prime

Observação: Na resolução enviada por você, o logaritmo natural foi representado por "log" ao invés de "ln".

Por outro lado, sabemos que se o resultado de uma derivada é igual a 0, então é porque a função que derivamos era constante.

Voltando para a equação, nós temos que:

\left[\ln f(x) - 2x\right]^\prime = 0

Ou seja, o resultado da derivada é igual a 0. Sendo assim, devemos ter que \ln f(x) - 2x é igual a uma constante. Vamos chamar essa constante de c. Podemos então escrever que:

\ln f(x) - 2x = c

Agora note que toda essa argumentação poderia ser reescrita na notação de Leibniz, que usa aquele "d" para representar a derivada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}